
FastDeepIoT: Towards Understanding and
Optimizing Neural Network Execution Time on

Mobile and Embedded Devices
Shuochao Yao

University of Illinois Urbana
Champaign

Yiran Zhao
University of Illinois Urbana

Champaign

Huajie Shao
University of Illinois Urbana

Champaign

ShengZhong Liu
University of Illinois Urbana

Champaign

Dongxin Liu
University of Illinois Urbana

Champaign

Lu Su
State University of New York at

Buffalo

Tarek Abdelzaher
University of Illinois Urbana

Champaign

ABSTRACT
Deep neural networks show great potential as solutions to
many sensing application problems, but their excessive re-
source demand slows down execution time, pausing a seri-
ous impediment to deployment on low-end devices. To ad-
dress this challenge, recent literature focused on compressing
neural network size to improve performance. We show that
changing neural network size does not proportionally affect
performance attributes of interest, such as execution time.
Rather, extreme run-time nonlinearities exist over the net-
work configuration space. Hence, we propose a novel frame-
work, called FastDeepIoT, that uncovers the non-linear rela-
tion between neural network structure and execution time,
then exploits that understanding to find network configura-
tions that significantly improve the trade-off between exe-
cution time and accuracy on mobile and embedded devices.
FastDeepIoT makes two key contributions. First, FastDeepIoT
automatically learns an accurate and highly interpretable ex-
ecution time model for deep neural networks on the target
device. This is done without prior knowledge of either the
hardware specifications or the detailed implementation of the
used deep learning library. Second, FastDeepIoT informs a

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
SenSys ’18, November 4–7, 2018, Shenzhen, China
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5952-8/18/11. . . $15.00
https://doi.org/10.1145/3274783.3274840

compression algorithm how to minimize execution time on
the profiled device without impacting accuracy. We evaluate
FastDeepIoT using three different sensing-related tasks on
two mobile devices: Nexus 5 and Galaxy Nexus. FastDeepIoT
further reduces the neural network execution time by 48% to
78% and energy consumption by 37% to 69% compared with
the state-of-the-art compression algorithms.

CCS CONCEPTS
• Human-centered computing → Ubiquitous and mo-
bile computing; • Computing methodologies → Ma-
chine learning; • Computer systems organization →
Embedded and cyber-physical systems;

KEYWORDS
Deep Learning, Execution Time, Model Compression, Mobile
Computing, Internet of Things

ACM Reference Format:
Shuochao Yao, Yiran Zhao, Huajie Shao, ShengZhong Liu, Dongxin
Liu, Lu Su, and Tarek Abdelzaher. 2018. FastDeepIoT: Towards
Understanding and Optimizing Neural Network Execution Time
on Mobile and Embedded Devices. In The 16th ACM Conference
on Embedded Networked Sensor Systems (SenSys ’18), November 4–
7, 2018, Shenzhen, China. ACM, New York, NY, USA, 14 pages.
https://doi.org/10.1145/3274783.3274840

1 INTRODUCTION
The proliferation of internetworked mobile and embedded
devices with growing sensing and computing capabilities
promises to revolutionize the interactions between humans
and devices that perform complex sensing and recognition
tasks. Much prior work has been dedicated to building

https://doi.org/10.1145/3274783.3274840
https://doi.org/10.1145/3274783.3274840

SenSys ’18, November 4–7, 2018, Shenzhen, China S. Yao et al.

Table 1: Execution time of convolutional layers with 3×
3 kernel size, stride 1, same padding, and 224×224 input
image size on the Nexus 5 phone.

in_channel out_channel FLOPs Time (ms)
CNN1 8 32 452.4 M 114.9
CNN2 32 8 452.4 M 300.2
CNN3 66 32 3732.3 M 908.3
CNN4 43 64 4863.3 M 751.7

smarter and more user-friendly sensing applications in sev-
eral embedded systems areas, including health and well-
ness [6, 25, 29, 33], context sensing [7, 21, 23, 31, 39], and
object detection and localization [9, 14, 18, 19, 22, 32].
At the same time, recent advances in deep learning have

changed the way computing devices process human-centric
content, such as images, speech and audio. Neural network
models are especially good at fusing multiple sensing modali-
ties and extracting temporal relationships, which have shown
remarkable improvements in audio sensing [11, 17], tracking
and localization [34], human activity recognition [24, 34, 36],
and environment sensing [35]. Applying deep neural net-
works to mobile and embedded devices could thus bring about
a generation of applications capable of performing complex
sensing and recognition tasks to support a new realm of inter-
actions between humans and their physical surroundings [37].
The key impediment to wide-spread deployment of deep-

learning-based sensing applications remains their high execu-
tion time and energy consumption on mobile and embedded
devices. Minimizing the execution time of deep neural net-
works is critical to preserve the real-time properties of such
embedded sensing applications as image recognition and ob-
ject detection in self-driving cars [12, 26]. One promising
solution is to compress neural networks into more succinct
structures. Traditionally, speeding up neural network exe-
cution time is accomplished by reducing the size of model
parameters [13, 38]. Most manually designed time-efficient
neural network structures for mobile devices use parameter
size or FLOPs as the indicator of execution time [15, 16, 40].
Even the official TensorFlow website recommends to use the
total number of floating number operations (FLOPs) of neural
networks “to make rule-of-thumb estimates of how fast they
will run on different devices".1

Although significant progress has been made on neural
network structure compression to reduce the resource de-
mands, changing neural network structure has a non-linear
effect on system performance, opening opportunities for fur-
ther performance improvements should such nonlinearities
be explicitly identified and exploited.
In this paper, we show how a better understanding of the

non-linear relation between neural network structure and
performance can further improve execution time and energy
consumption without impacting accuracy. The rest of this

1https://www.tensorflow.org/versions/r1.5/mobile/optimizing

25 30 35 40 45
100

200

300

400

Input/Output Channel Size

Ex
ec

ut
io

n
Ti

m
e

(m
s)

Figure 1: The non-linearity of neural network execu-
tion time over input/output channel.
paper is organized as follows. The nonlinear relation between
network structure and performance is discussed in Section 2.
We present the technical details of FastDeepIoT in Section 3
and system implementation in Section 4. The evaluation is
presented in Section 5. Section 6 introduces related work. We
conclude in Section 7 introducing avenues for future work.

2 NONLINEARITIES: EVIDENCE AND
EXPLOITATION

In practice, counting the number of neural network param-
eters and the total FLOPs does not lead to good estimates
of execution time because the relation between these predic-
tors and execution time is not proportional. On one hand,
the fully-connected layer usually has more parameters but
takes much less time to run compared to the convolutional
layer [27]. On the other hand, one can easily find examples,
where increasing the total FLOPs does not translate into added
execution time. Caching effects, memory accesses, and com-
piler optimizations complicate the translation. Table 1 shows
that CNN2 takes around ×2.6 the execution time of CNN1,
while both have the same total FLOPs. Moreover, CNN3 takes
longer to run compared to CNN4 despite having fewer FLOPs.
These observations indicate that current rules-of-thumb for
estimating neural network execution time are not the best
approximations.

FastDeepIoT answers two key questions to better parame-
terize neural network implementations for efficient execution
on mobile and embedded platforms:
(1) What are the main factors that affect the execution time

of neural networks on mobile and embedded devices?
(2) How to guide existing structure compression algorithms

to minimize the neural network execution time properly?
FastDeepIoT consists of two main modules to tackle these
two challenging problems, respectively.

Profiling: Due to different code-level optimizations for differ-
ent network structures within the deep learning library, the
execution time of neural network layers can be extremely
nonlinear over the structure configuration space. A simple
illustration is shown in Figure 1, where we plot the execution
time of convolutional layers when changing the size of input
and output channels simultaneously. The plot reveals non-
monotonic effects, featuring periodic dips in execution time
as network size increases.

https://www.tensorflow.org/versions/r1.5/mobile/optimizing

Understanding and Optimizing Neural Network Execution Time SenSys ’18, November 4–7, 2018, Shenzhen, China

A simple regression model over the entire space will thus
not be a good approximation. Instead, we propose a tree-
structured linear regression model. Specifically, we automati-
cally detect key conditions at which linearity is violated and
arrange them into a tree structure that splits the overall mod-
eling space into piecewise linear regions. Within each region
(tree branch), we use linear regression to convert input struc-
ture information into some key explanatory variables, predic-
tive of execution time. The splitting of the overall space and
the fitting of subspaces to predictive models are done jointly,
which improves both model interpretability and accuracy. The
aforementioned modeling is done without specific knowledge
of underlying hardware and deep learning library.

Compression: Using the results of profiling, we then propose
a compression steering module that guides existing neural
network structure compression methods to better minimize
execution time. The execution time model leads compression
algorithms to focus more on the layer that takes longer to
run instead of treating all layers equally or concentrating
on inaccurate total metrics. It is also better able at exploit-
ing non-monotonicity of execution time with respect to net-
work structure size to reduce the former without hurting
application-level accuracy metrics.
We evaluate the profiling and compression steering mod-

ules in FastDeepIoT on two devices, Nexus 5 and Galaxy
Nexus, with the TensorFlow for Mobile library [2]. The profil-
ing module is evaluated on all commonly used network layers,
including fully-connected, convolutional, and recurrent layers.
The mean absolute percentage error in estimating execution
time is around 1% to 7%, which outperforms other complex
regression models in most cases. The compression steering
module is evaluated with three representative sensing-related
tasks, including vision-based interactions and human activity
recognition. Compared to the state-of-the-art compression
algorithms, FastDeepIoT can speed up the neural network
execution time by an additional 48% to 78%, and improve en-
ergy consumption by an additional 37% to 69% on all devices
without loss of accuracy.

3 SYSTEM DESIGN
As mentioned above, the contribution of FastDeepIoT lies
in two modules; the profiling module and the compression
steering module. Below, we introduce the technical details of
the two modules, respectively.

3.1 Profiling Module
We separate this module into two parts. The first part gen-
erates diverse training structures for profiling. The second
part builds an accurate and interpretable model predicting
the execution time of deep learning components for the cor-
responding structure information.

Table 2: The scope of our structure configuration for
fully-connected (FC), convolutional (CNN), and recur-
rent (RNN) layers.

Type Structure configuration scope
FC in_dim ∈ [1, 4096] out_dim ∈ [1, 4096]

CNN

in_height ∈ [24, 225] in_width ∈ [24, 225]
kernel_height × kernel_width ∈ {2 × 2, 3 × 3, 4 × 4, 5 × 5, 2 × 3}

in_channel ∈ [1, 256] out_channel ∈ [1, 256]
padding ∈ {valid, same} stride ∈ {1, 2}

RNN in_dim ∈ [1, 512] out_dim ∈ [1, 512]
step ∈ {8, 10, 15, 20}

3.1.1 Neural Network Profiling. We introduce the basic sys-
tem settings and the procedure of generating training struc-
tures for profiling here.
FastDeepIoT utilizes TensorFlow benchmark tool [1] to

profile the execution time of all deep learning components
on the target device. In order to make the profiling results
fully reflect the changes on the neural network structures,
we fix the frequencies of phone CPUs (processors) to be con-
stants and stop all the power management services that can
affect the processor frequency on target devices, such as fixing
mpdecision on Qualcomm chips.
The next step is to generate diverse neural network struc-

tures for time profiling. As a deep learning component, such
as a convolutional layer and recurrent layer, the combinations
of its structure design choices can form an extremely huge
structure configuration space. Therefore, we can only select a
small proportion of structure configurations during our time
profiling. The scope of our structure configuration is shown
in Table 2, from which the network generation code chooses
a random combination. Notice that we do not contain the
activation function as the profiling choice, because it only
occupies around 1% ∼ 2% execution time of a deep learn-
ing component through empirical observations. By eliminat-
ing this insignificant configuration, i.e., activation_function
∈ {ReLU,Tanh, sigmoid}, we can save the number of profiling
components by the factor of 3. Except for some pre-defined
cases, such as sigmoid activation function for gate outputs in
recurrent layers, we set all activation functions to be ReLU,
which is one of the most widely used activation functions.
In addition, the order of deep learning components in the
network has little impact on their execution time empirically.
In our profiling module, for each target device, we profile

around 120 neural networks with about 1300 deep learning
components in total. These time profiling results form a time
profiling dataset, D = {Si ,yi }, where Si is the structure
configuration and yi the execution time.
3.1.2 Execution Time Model Building. Due to the code-

level optimization for different component configuration
choices in the deep learning library, execution-time non-
linearity appears over the structure configuration space as
shown in Figure 1. The main challenge here is to build a model
that can automatically figure out the conditions that cause

SenSys ’18, November 4–7, 2018, Shenzhen, China S. Yao et al.

the execution-time non-linearity without specific knowledge
of underlying library and hardware.
In order to maintain both the accuracy and interpretabil-

ity, we propose a tree-structure linear regression model. The
model can recursively partition the structure configuration
space such that the time profiling samples fitting the same
linear relationship are grouped together. The intuition be-
hind this model is that the execution time of deep learning
component under each particular code-level optimization can
be formulated with a linear relationship given a set of well-
designed explanatory variables. In addition, different deep
learning components, i.e., fully connected, convolutional, and
recurrent layer, learn their own execution time models.
Each time profiling data is composed of three elements.

The feature vector f , used for identifying the condition that
causes the execution-time non-linearity; the execution time
y; and the explanatory variable vector x, used for fitting the
execution time y.

The basic idea of tree-structure linear regression is to find
out the most significant condition causing the execution-time
non-linearity within the current dataset recursively. These
conditions will form a binary tree structure. In order to figure
out key conditions causing the execution-time non-linearity,
we take two conditioning functions into account.
(1) Range condition C1 (f[j],τ) := f [j] ≤ τ : identifies

execution-time non-linearity caused by cache and mem-
ory hit as well as specific implementation for a certain
feature range.

(2) Integer multiple condition C2 (f[j],τ) := f [j] ≡ 0 (mod τ):
identifies execution-time non-linearity caused by loop
unrolling, data alignment, and parallelized operations.
Assume that we are generating nodem in the binary tree

with dataset Dm . The model creates a set of conditions {ϕ}.
Each of them can partition the dataset into two subsets
D

(l)
m (ϕ) and D (r)

m (ϕ). Each condition ϕ consists of three ele-
ments, ϕ = {f[j],τm ,k }, where k ∈ {1, 2} is the conditioning
function type.

D
(l)
m (ϕ) = Dm |Ck (x j ,τm),

D
(r)
m (ϕ) = Dm\D

(l)
m (ϕ).

(1)

Nodem selects the most significant condition ϕ∗ by mini-
mizing the impurity function G (Dm ,ϕ),

ϕ∗=argmin
ϕ

G (Dm ,ϕ), (2)

G (Dm ,ϕ)=

���D
(l)
m (ϕ)���
|Dm |

H
(
D

(l)
m (ϕ)

)
+

���D
(r)
m (ϕ)���
|Dm |

H
(
D

(r)
m (ϕ)

)
, (3)

H (D)=min
w,b

1
|D|

∑
(x,y)∈D

(w⊺x + b − y)2 s.t. w,b ≥ 0. (4)

Algorithm 1 Execution time model building
1: Input: time profiling dataset Dz , feature vector f , two conditioning functions

f [j] ≤ τ and f [j] ≡ 0 (mod τ), and explanatory variable xz .
2: Fit Dz with wr and br according to (4).
3: Save root node r = [∅, wr , br]
4: Initialize: que =

[
[r, Dz]

]
.

5: while len(que) > 0 do
6: q, Dq = que.deque()
7: if Dq meets stoping condition then
8: Continue
9: end if
10: Search for the optimal partition ϕ∗ = {f [j∗], τ ∗, k∗ } according to (2) (3) (4).
11: Generate partitioned dataset D (l)

q (ϕ∗) and D (r)
m (ϕ∗) according to (1).

12: Fit D (l)
q (ϕ∗) with w(l)

q and b (l)
q according to (4).

13: Fit D (r)
q (ϕ∗) with w(r)

q and b (r)
q according to (4).

14: Save q’s left child node q (l) =
[
[True, ϕ∗], w(l)

q , b (l)
q

]

15: Save q’s right child node q (r) =
[
[False, ϕ∗], w(r)

q , b (r)
q

]

16: que.enque
(
[q (l), D

(l)
q (ϕ∗)]

)
17: que.enque

(
[q (r), D

(r)
q (ϕ∗)]

)
18: end while

The impurity function is designed as the weighted mean
square errors of linear regressions over two sub-datasets par-
titioned by the condition ϕ.

Next, we describe the feature vector f . Our choice of feature
vector f contains three parts: the structure features, the mem-
ory features, and the parameter feature. The structure features
refer to in_dim and out_dim for fully-connected and recurrent
layers as well as in_channel and out_channel for convolu-
tional layers. The memory features include the memory size
of input, mem_in, the memory size of output, mem_out, and
the memory size of internal representations, mem_inter. The
parameter feature refers to the size of parameters, param_size.
The detailed definitions of memory and parameter features
are shown in Table 3. All notations in Table 3 are consistent
with the notations of structure configurations in Table 2, ex-
cept for the height and width of output image, out_height and
out_width, in the convolutional layer. However, we can easily
calculate these two values based on other structure infor-
mation, i.e., in_height, in_width, kernel_height, kernel_width,
stride, and padding 2.
Last, we discuss about our explanatory variable vector x

for linear regression. In this paper, we build an intuitive per-
formance model that the execution time of a program is con-
tributed by three parts, CPU operations, memory operations,
and disk I/O operations. For a deep learning component, these
parts refer to FLOPs, memory size, and parameter size,

x = [FLOPs,mem,param_size]. (5)

wheremem =mem_in +mem_out +mem_inter .
With the weight vector w and the bias term b, the over-

all execution time of a deep learning component, y, can be
modelled as y = w⊺x+b. Since every term should have a pos-
itive contribution to the execution time, we add an additional
constraint, w,b ≥ 0, as shown in (4).
2https://www.tensorflow.org/api_guides/python/nn#Convolution

https://www.tensorflow.org/api_guides/python/nn#Convolution

Understanding and Optimizing Neural Network Execution Time SenSys ’18, November 4–7, 2018, Shenzhen, China

Table 3: The definition of parameter and memory information for Fully-Connected layer (FC), Convolutional
layer (CNN), Gated Recurrent Unit (GRU), and Long Short Term Memory (LSTM).

Type param_size mem_in mem_out mem_inter

FC in_dim × out_dim + out_dim in_dim out_dim 0

CNN kernel_height × kernel_width× in_height × in_width× out_height × out_width× out_height × out_width × kernel_height×
in_channel × out_channel +1 in_channel out_channel kernel_width × in_channel

GRU 3 × out_dim× step × in_dim step × out_dim 3 × step × out_dim
(in_dim + out_dim + 1)

LSTM 4 × out_dim× 2 × step × in_dim 2 × step × out_dim 4 × step × out_dim
(in_dim + out_dim + 1)

Table 4: The p-values of explanatory variables.
Type FLOPs mem param_size step

FC 0.000 0.000 1.000
CNN 0.037 0.009 1.000
GRU 0.000 0.000 1.000 0.000
LSTM 0.000 0.000 1.000 0.000

The tree-structure linear regression model builds a binary
tree that gradually picks out conditions that cause execution-
time non-linearity and breaks the dataset into subsets that
contain more “linearity". Our designed explanatory variable
vector x is able to fit the dataset with linear relationships
better level by level, especially for fully-connected and convo-
lutional layer. The recurrent layers, however, still have flaws.
We analyze the error and find out that recurrent layers have
a constant initialization overhead or set-up time for each step.
Therefore, we update explanatory variable vector x,

xf c = xcnn = [FLOPs,mem,param_size],
xrnn = [FLOPs,mem,param_size, step]. (6)

We summarize our execution time model building process
in Algorithm 1. There is a stopping condition in Line 7 that
keeps tree-structure linear regression from growing infinitely.
In our case, the stopping condition occurs when a linear re-
gression can fit the current dataset Dq with a mean absolute
percentage error less than 5% or when the size of current
dataset is smaller than 15, |Dq | < 15.
3.1.3 Execution Time Model with Statistical Analysis. In

this part, we provide an illustration of the FastDeepIoT profil-
ing module on Nexus 5 phone with statistical analysis. The
module first profiles and generates the execution time profil-
ing dataset. Then, the module builds an execution time model
for each deep learning component based on the tree-structure
linear regression in Algorithm 1. Additional evaluations on
the execution time model will be shown in Section 5.1.

For fully-connected layers and recurrent layers, including
GRU and LSTM, their execution time has a perfect linear rela-
tionship with our explanatory variable vector xf c and xrnn .
However, the execution time model of convolutional layers re-
flects a strong non-linearity over the structure configuration
space. As shown in Figure 2, the execution time of convolu-
tional layer has local minima when in_channel or out_channel
is a multiple of 4.

Then we calculate the p-values to evaluate the mathemati-
cal relationship between each explanatory variable and the

execution time. The p-value for each explanatory variable
tests the null hypothesis that the variable has no correlation
with the execution time. Results are shown in Table 4. The
p-values of explanatory variables, FLOPs, mem, and step, are
less than the significance level (0.05) for all deep learning
components. So our empirical time profiling data provides
enough evidence that the correlation between these explana-
tory variables and the execution time are statistically signif-
icant. However, the p-values for param_size is high for all
cases, which shows that the number of parameters has limited
correlation with the execution time. This experiment, again,
highlights the importance of proposing a compression algo-
rithm targeting on minimizing the execution time instead the
number of parameters.

3.2 Compression Steering Module
Profiling and modelling deep learning execution time is not
enough for speeding up the model execution. In this section,
we introduce the compression steering module that is de-
signed to empower existing deep learning structure compres-
sion algorithms to minimize model execution time properly.

We assume that S = {sl } andW = {Wl } for l = 1, · · · ,L is
structure information and weight matrix of a neural network
from layer 1 to layer L respectively. We denote our execution
time model as tl = T (sl), which takes the structure infor-
mation sl as input and predicts the component execution
time tl . For a general neural network structure compression
algorithm, we denote the original compression process as,

min
S,W

Lθ (S,W), (7)

where the compression algorithm minimizes a loss function,
concerning prediction error or parameter size, with either the
gradient descend or searching based optimization method.

In order to enable the compression algorithm to minimize
the execution time, our first step is to incorporate the execu-
tion time model into the original objective function (7),

min
S,W

Lθ (S,W) + λ
L∑
l=1
T (sl), (8)

where λ is a hyper-parameter that make the tradeoff between
minimizing training loss and minimizing execution time.
Adding execution time to the compression objective func-

tion can encourage the compression algorithm to concentrate

SenSys ’18, November 4–7, 2018, Shenzhen, China S. Yao et al.

in_channel ≡ 0 (mod 4)

out_channel ≡ 0 (mod 4)

True

in_channel < 48 mem_out < 28M

in_channel ≡ 0 (mod 32) in_channel ≡ 0 (mod 32)

out_channel ≡ 0 (mod 32)

False

out_channel < 64

mem_inter < 1.4M

out_channel ≡ 0 (mod 4)

Figure 2: The execution time model of convolutional layers on Nexus 5.

in_channel < 48

in_channel ≡ 0 (mod 32)

True

in_channel ≡ 0 (mod 4)
out_channel ≡ 0 (mod 4)

Constraints

Figure 3: Simplified execution
time model of convolutional
layers on Nexus 5.

Algorithm 2 Layer expansion and local minima searching
1: Input: the execution time model T () with root node r and the layer structure
{f, x}.

2: Set node = r , condL = [].
3: while ¬(node.left == None & node.right == None) do
4: if node.cond is a range condition then
5: condL.append(node.cond)
6: if f obeys node.cond then
7: node = node.left
8: else
9: node = node.right
10: end if
11: else
12: f̂ = f and x̂ = x.
13: f̂[node.j] = node.τ ×

⌈
f[node.j]/node.τ

⌉

14: Update x̂ according to f̂ .
15: if node.w⊺T x̂ + node.bT > node.w⊺F x + node.bF & f̂ obeys condL then
16: f = f̂ and x = x̂.
17: node = node.left
18: else
19: node = node.right
20: end if
21: end if
22: end while
23: Return: f

more on the layers with higher execution time, which helps
to speed up the whole neural network.

However, due to the existence of execution-time local min-
ima, compressing neural network structure is not always the
optimal choice for minimizing the execution time. As shown
in Figure 1, enlarging neural network structure can find a
nearby execution-time local minimum that reduces the ex-
ecution time. Notice that enlarging structure is a lossless
operation. We can at least enlarge weight matrices with zeros
that keeps performance the same.

In general, utilizing execution-time local minima for speed-
ing up involves two steps:
(1) Identifying an expanded structure configuration that

can trigger a nearby execution-time local minimum.
(2) Deciding whether the expanded structure can speed up

the execution time.
For an execution time model trained with a complex

method, such as neural networks, identifying a nearby
execution-time local minimum can be almost impossible by
blindly searching a large configuration space. However, our
tree-structure linear regression can easily identify a nearby
local minimum speeding up the neural network execution.
Local extrema, i.e., maxima and minima, are identified by
the integer multiple condition, f [j] ≡ 0 (mod τ), in our tree-
structure linear regression model. Our compression steering

ou
t_

c

in_c

out_c = in_c

yT(in_c + 3, out_c) - yF(in_c, out_c) = 0

Safely expanding region
Safely expanding square region

Figure 4: The square region of safely expanding
in_channel for speed up.
module searches for the nearby local maxima by gradually ex-
panding the structure that fits the integer multiple conditions
from root node to leaf node in the execution time model.
Assume that node m is under the condition f[jm] ≡

0 (mod τm) with two sets of linear regression parameters
{wT ,bT } and {wF ,bF } used for fitting the dataset that obey-
ing and against the condition respectively. A deep learning
layer is denoted with the feature vector fl and the explana-
tory variable vector xl . The compression steering module
generates an expanded layer with feature vector f̂l and ex-
planatory variable vector x̂l by updating the conditioning
feature f̂[jm] = τm

⌈
f[jm]/τm

⌉
. Then the module compares the

values between w⊺T x̂ + bT and w⊺F x + bF to decide whether it
should accept the expansion for speeding-up and go through
the corresponding branch.
The layer structure expansion and local minima search-

ing process is summarized in Algorithm 2. The algorithm
goes through whole tree structure to find out a nearby local
minimum that reduces the execution time.
For a whole neural network, each layer goes through

the structure expansion and local minima searching process
one by one. It is possible that conflicts exist between ex-
panded structures of two neighbouring layers. The module
solves these conflicts sequentially by choosing the one having
shorter overall execution time.

In addition, we can further analyze the structure expansion
process for a particular component on a particular device for
a particular application settings. For example, assume that we
are compressing the in_channel and out_channel of a convo-
lutional layer on Nexus 5 with kernel size 3 × 3, input image
size 24 × 24, and the same padding. We are considering the
root condition in_channel ≡ 0 (mod 4) as shown in Figure 2.
According to our execution time model, two linear regression
models that fit the two datasets in the left and right child of
the root node are:

wT = [3.41 × 10−8, 4.03 × 10−6, 7.11 × 10−25] bT = 8.11,

wF = [3.11 × 10−8, 8.03 × 10−6, 1.52 × 10−34] bF = 12.82.
(9)

Understanding and Optimizing Neural Network Execution Time SenSys ’18, November 4–7, 2018, Shenzhen, China

Then we can obtain the execution time as a function of
in_channel and out_channel by substituting the explanatory
variable vector x with definitions illustrated in Table 3 as well
as the application settings about kernel size, input image size,
and padding option.

yT (in_c, out_c) =3.53 × 10−4 · in_c · out_c + 8.11+

2.32 × 10−2 · in_c + 2.32 × 10−3 · out_c,

yF (in_c, out_c) =3.23 × 10−4 · in_c · out_c + 12.82+

4.63 × 10−2 · in_c + 4.63 × 10−3 · out_c,

(10)

where we denote in_channel and out_channel as in_c and
out_c for simplicity.
We are interested in the region where expanding the

in_channel to a nearby multiple of 4 can speed up the ex-
ecution. This is equivalent to solving

yT (in_c + 3, out_c) − yF (in_c, out_c) < 0, (11)

where its zero contour line is a hyperbola. Therefore, within
the region bounded by in_channel axis, out_channel axis, and
zero contour line, we can safely expand in_channel to a mul-
tiple of 4 to speed up the convolutional layer execution time.
In order to have a more interpretable result, as shown in

Figure 4, we can obtain a square region by finding the in-
tersections between the zero contour line and the function
out_channel = in_channel . In this case, within the region
in_channel × out_channel ∈ [1, 1288] × [1, 1288], we can
blindly expand in_channel to a multiple of 4 to speed up.
This region is much larger than the region we are interested
in. We can keep analyzing the next condition out_channel ≡
0 (mod 4) and achieve similar result. Within the region
in_channel × out_channel ∈ [1, 808] × [1, 808], we can safely
expand in_channel and out_channel to a nearby multiple of 4
to speed up. In the end, we can obtain a simplified execution
time model T̂ as shown in Figure 3.

In summary, the compression steering module compresses
the neural network structure for reducing overall execution
time with three steps.
(1) Compressing neural network with a time-aware objec-

tive function (8) with execution time model T .
(2) Expanding layer structure and searching local minima

for further speed up according to Algorithm 2 with
execution time model T or T̂ (if available).

(3) Depending on the original compression algorithm,
freeze the structure and fine-tune the neural network.

4 IMPLEMENTATION
In this section, we briefly describe the hardware, software,
and architecture of FastDeepIoT.

4.1 Hardware
In this paper, we test FastDeepIoT on two types of hardware,
Nexus 5 phone and Galaxy Nexus phone. Two devices are

profiled for each type of hardware. The Nexus 5 phone is
equipped with quad-core 2.3 GHz CPU and 2 GB memory.
The Galaxy Nexus phone is equipped with dual-core 1.2 GHz
CPU and 1GB memory. We stop the mpdecision service and
use userspace CPU governor for two hardware. We manually
set 1.1GHz for the quad-core CPU on Nexus 5, and 700MHz for
the dual-core CPU on Galaxy Nexus to prevent overheating
caused by the constant time profiling. In addition, all profiling
and testing neural network models are run solely on CPU. The
execution time model building and the compression steering
module are implemented on a workstation connected to two
phones.

4.2 Software
FastDeepIoT utilizes TensorFlow benchmark tool [1], a C++
binary, to profile the execution time of deep learning com-
ponents. For each neural network, the benchmark tool have
one warm up run to initialize the model and then profile all
components execution time with 20 runs without internal
delay. Mean values are taken as the profiled execution time.
We install Android 5.0.1 on Nexus 5 phone and Android

4.3 on Galaxy Nexus phone. All additional background ser-
vices are closed during the profiling and testing. All energy
consumptions are measured by an external power meter.

4.3 Architecture
Given a target device, FastDeepIoT first queries the device and
its own database for a pre-generated execution time model
with device type and OS version as the key. If the query fails,
the profilingmodule starts its function. FastDeepIoT generates
random neural network structures based on the configura-
tion scope in Table 2, pushes the Protocol Buffers (.pb file)
to the target device, profiles the execution time of compo-
nents, fetches back and processes the profiling result. Once
the profiling process has finished, FastDeepIoT learns tree-
structure linear regression execution timemodels according to
Algorithm 1 based on the time profiling dataset. FastDeepIoT
pushes the generated execution time models to the target
device and its own database for storage.
Then given an original neural network structure and pa-

rameters, the compression steering module can automatically
generate a compressed structure to speed up inference time
for a target device. FastDeepIoT queries the target device and
own database for a pre-generated execution time model, and
choose a structure compression algorithm, DeepIoT as a de-
fault, to reduce the deep learning execution time according to
(8) and Algorithm 2. The resulting compressed neural network
is transferred to the target device used locally.

5 EVALUATION
In this section, we evaluate FastDeepIoT through two sets of
experiments. The first set evaluates the accuracy of the exe-
cution time model generated by our profiling module, while

SenSys ’18, November 4–7, 2018, Shenzhen, China S. Yao et al.

Table 5: The Mean Absolute Percentage Error (MAPE),
Mean Absolute Error (MAE) in millisecond, and Coeffi-
cient of determination (R2) of execution time models.

(a) Nexus 5-Convolutional layer
FastDeepIoT SVR DT RF GBRT DNN

MAPE 7.6% 233.8% 23.8% 19.7% 10.9% 6.4%
MAE 15.2 227.1 39.2 27.3 20.5 16.4
R2 0.991 −0.229 0.969 0.985 0.988 0.994

(b) Nexus 5-Gated recurrent unit
FastDeepIoT SVR DT RF GBRT DNN

MAPE 1.8% 78.7% 9.4% 6.7% 4.8% 2.0%
MAE 0.6 23.6 2.9 1.8 1.5 0.7
R2 0.999 −0.078 0.986 0.995 0.995 0.999

(c) Nexus 5-Long short term memory
FastDeepIoT SVR DT RF GBRT DNN

MAPE 2.3% 73.7% 9.0% 4.7% 4.1% 2.8%
MAE 0.6 23.7 3.0 1.4 1.6 0.9
R2 0.999 −0.223 0.977 0.995 0.993 0.998

(d) Nexus 5-Fully-connected layer
FastDeepIoT SVR DT RF GBRT DNN

MAPE 1.9% 133.5% 22.5% 12.0% 0.2% 1.9%
MAE 0.19 5.98 1.18 0.38 0.01 0.19
R2 0.999 0.065 0.977 0.996 0.999 0.999

(e) Galaxy Nexus-Convolutional layer
FastDeepIoT SVR DT RF GBRT DNN

MAPE 4.1% 164.3% 33.1% 23.0% 15.2% 14.5%
MAE 26.8 878.7 162.9 123.7 114.6 110.1
R2 0.999 −0.246 0.969 0.980 0.982 0.983

(f) Galaxy Nexus-Gated recurrent unit
FastDeepIoT SVR DT RF GBRT DNN

MAPE 2.9% 71.5% 10.5% 8.8% 6.0% 4.1%
MAE 1.1 27.8 4.8 4.1 3.2 2.2
R2 0.997 −0.065 0.968 0.977 0.984 0.989

(g) Galaxy Nexus-Long short term memory
FastDeepIoT SVR DT RF GBRT DNN

MAPE 2.9% 66.8% 8.4% 7.8% 6.0% 2.9%
MAE 1.4 26.2 3.0 3.3 2.7 1.3
R2 0.997 −0.196 0.983 0.985 0.987 0.997

(h) Galaxy Nexus-Fully-connected layer
FastDeepIoT SVR DT RF GBRT DNN

MAPE 4.0% 55.0% 12.3% 11.3% 9.5% 4.1%
MAE 0.3 6.7 1.2 0.9 1.0 0.3
R2 0.996 −0.629 0.944 0.972 0.949 0.996

the second set evaluates the performance of our compression
steering module. In order to evaluate execution time model-
ing accuracy, we compare our tree-structured linear regres-
sion model to other state-of-the-art regression models on two
mobile devices. To evaluate the quality of compression, we
present a set of experiments that demonstrate the speed-up of
the compressed neural network obtained by the compression
steering module with three human-centric interaction and
sensing applications.
5.1 Execution time Model
We implement the following execution time estimation alter-
natives:
(1) SVR: support vector regression with radial basis function

kernel [8]. This algorithm tries to perform linear separa-
tion over a higher dimensional kernel feature space by
characterizing the maximal margin.

(2) DT: classification and regression trees [5]. This is an in-
terpretable model. It groups and predicts execution time
by the execution time itself.

(3) RF: random forest regression [4]. This algorithm trades
the interpretability of regression tree for the predictive
performance by ensembling multiple trees with random
feature selections.

(4) GBRT: gradient boosted regression trees [10]. This algo-
rithm builds an additive model in a forward stage-wise
fashion, which is hard to interpret.

(5) DNN:multilayer perceptron [20]. Deep neural network is
a learning model with high capacity. We build a four-layer
fully connected neural network with LeRU as the activa-
tion function, except for the output layer. We fine-tune the
structure and apply dropout as well as L2 regularization
to prevent overfitting. DNN is a black-box model.
We train all the baseline models with the dataset gener-

ated by the profiling module in FastDeepIoT (75% for training
and 25% for testing). For each deep learning component, such
as CNN and LSTM, an individual model is trained. We have
trained these models with feature vector f , explanatory vari-
able vector x, and the concatenate of feature and explanatory
variable vectors as inputs, where f and x are the same as the
definitions in Section 3.1.2. We find that the model trained
with explanatory variable vector x outperforms other choices
consistently in all cases, so we only report the results of mod-
els trained with x for simplicity.
We evaluate these models on convolutional layer, gated

recurrent unit, long short term memory, and fully-connected
layer with mean absolute percentage error, mean absolute
rrror, and coefficient of determination on two hardware. As
shown in Table 5, FastDeepIoT is consistently among top 2
predictors for all experiments with all three metrics. Fast-
DeepIoT also outperforms the highly capable deep learning
model for more than half of the cases, while FastDeepIoT
is much more interpretable. There are two reasons for the
remarkable performance of FastDeepIoT. On one hand, Fast-
DeepIoT captures the primary characters of deep learning
execution time behaviours, which makes an interpretable and
accurate model possible. On the other hand, since the profiled
dataset is limited (around one thousand samples for training),
complex models such as deep neural networks that require
large training dataset may not be the best choice here.

5.2 Compression Steering Module
In this section, we evaluate the performance of our compres-
sion steering module with three sensing applications. We
train the neural networks on traditional benchmark datasets
as original models. Then, we compress the original models
using FastDeepIoT and the three state-of-the-art baseline al-
gorithms. Finally, we test the accuracy, execution time, and
energy consumption of compressed models on mobile devices.

Understanding and Optimizing Neural Network Execution Time SenSys ’18, November 4–7, 2018, Shenzhen, China

Table 6: VGGNet (hidden units) on CIFAR-10 dataset.
No Execution Time Model Nexus 5 Galaxy Nexus

Layer Original DeepIoT DeepIoT+localMin DeepIoT+FLOPs FastDeepIoT FastDeepIoT
conv1-1 (3 × 3) 64 27 28 19 12 16
conv1-2 (3 × 3) 64 47 48 17 16 24
conv2-1 (3 × 3) 128 53 56 33 28 36
conv2-2 (3 × 3) 128 68 68 50 32 44
conv3-1 (3 × 3) 256 104 104 89 64 72
conv3-2 (3 × 3) 256 97 100 79 64 56
conv3-3 (3 × 3) 256 89 92 77 68 72
conv4-1 (3 × 3) 512 122 124 115 132 96
conv4-2 (3 × 3) 512 95 96 112 136 80
conv4-3 (3 × 3) 512 64 64 112 104 120
conv5-1 (2 × 2) 512 128 128 143 148 116
conv5-2 (2 × 2) 512 112 112 132 144 108
conv5-3 (2 × 2) 512 146 148 182 104 92

fc1 4096 27 27 1097 132 132
fc2 4096 161 161 935 152 123
fc3 1000 10 96 72 157 167

Test accuracy 90.6% 90.6% 90.6% 90.6% 90.6% 90.6%
Execution time t (Nexus 5) 328 ms 31 ms 21 ms 28 ms 16 ms 23 ms

Execution time t (Galaxy Nexus) 610 ms 72 ms 63 ms 52 ms 36 ms 34 ms

6 10 15 20 50 100 200
75

80

85

90

Execution Time (ms)

A
cc

ur
ac

y
%

FastDeepIoT (Galaxy Nexus)
FastDeepIoT (Nexus 5)
DeepIoT
DeepIoT+localMin
DeepIoT+FLOPs

(a) Tradeoff between testing accuracy
and execution time on Nexus 5.

15 20 50 100 200 300
75

80

85

90

Execution Time (ms)

A
cc

ur
ac

y
%

FastDeepIoT (Galaxy Nexus)
FastDeepIoT (Nexus 5)
DeepIoT
DeepIoT+localMin
DeepIoT+FLOPs

(b) Tradeoff between testing accuracy
and execution time on Galaxy Nexus.

1 5 10 25
75

80

85

90

Parameter Proportion (%)

A
cc

ur
ac

y
%

FastDeepIoT (Galaxy Nexus)
FastDeepIoT (Nexus 5)
DeepIoT
DeepIoT+localMin
DeepIoT+FLOPs

(c) Tradeoff between testing accuracy
and compressed parameter size.

7 10 15 20 50 100
75

80

85

90

Energy (mJ)

A
cc

ur
ac

y
%

FastDeepIoT (Galaxy Nexus)
FastDeepIoT (Nexus 5)
DeepIoT
DeepIoT+localMin
DeepIoT+FLOPs

(d) Tradeoff between testing accuracy and
energy consumption on Nexus 5.

5 10 15 20 50 100 200
75

80

85

90

Energy (mJ)

A
cc

ur
ac

y
%

FastDeepIoT (Galaxy Nexus)
FastDeepIoT (Nexus 5)
DeepIoT
DeepIoT+localMin
DeepIoT+FLOPs

(e) Tradeoff between testing accuracy and
energy consumption on Galaxy Nexus.

Figure 5: System performance tradeoff for VGGNet on CIFAR-10 dataset
We compare FastDeepIoT with three baseline algorithms:

(1) DeepIoT: This is a state-of-the-art neural structure com-
pression algorithm [38]. The algorithm designs a compres-
sor neural network with adaptive dropout to explore a
succinct structure for the original model.

(2) DeepIoT+localMin:We enhance DeepIoT with the abil-
ity of expanding layer for finding execution-time localmin-
ima. This method takes the compressed model of DeepIoT
and expands its layers with zero-value elements that can
trigger local minima according to Algorithm 2. We use
this almost zero-effort method to show the improvement
made on existing compressed models by interpreting deep
learning execution time with FastDeepIoT.

(3) DeepIoT+FLOPs: This method enhances DeepIoT by
adding a term that minimizes FLOPs to the original ob-
jective function (7). Since a large proportion of works
use FLOPs as the execution time estimation [15, 16, 40],
this method shows to what extend FLOPs can be used to
compress neural network for reducing execution time.

5.2.1 Image recognition on CIFAR-10. This is a vision based
task, image recognition based on a low-resolution camera.
During this experiment, we use CIFAR-10 as our training and
testing dataset. The CIFAR-10 dataset consists of 60000 32×32
colour images in 10 classes, with 6000 images per class. There
are 50000 training images and 10000 test images.

During the evaluation, we use VGGNet structure as the orig-
inal network structure [28]. The detailed structure is shown in
Table 6, where we also illustrate the best compressed models
that keeps the original test accuracy for all algorithms. The
compressed model can be even deployed on tiny IoT devices
such as Intel Edison.

As shown in Table 6, FastDeepIoT achieves the best perfor-
mance on two hardware with their corresponding execution
time models. Compared with the state-of-the-art DeepIoT
algorithm, FastDeepIoT can further reduce the model exe-
cution time by 48% to 53%. DeepIoT+localMin outperforms
DeepIoT on two hardware, reducing the execution time by

SenSys ’18, November 4–7, 2018, Shenzhen, China S. Yao et al.

Table 7: VGGNet (hidden units) on ImageNet dataset.
No Execution Time Model Nexus 5 Galaxy Nexus

Layer Original DeepIoT DeepIoT+localMin DeepIoT+FLOPs FastDeepIoT FastDeepIoT
conv1-1 (3 × 3) 64 43 44 23 12 16
conv1-2 (3 × 3) 64 47 48 32 12 16
conv2-1 (3 × 3) 128 100 100 65 20 44
conv2-2 (3 × 3) 128 97 100 67 40 40
conv3-1 (3 × 3) 256 164 164 116 88 108
conv3-2 (3 × 3) 256 164 164 135 72 104
conv3-3 (3 × 3) 256 153 156 70 116 108
conv4-1 (3 × 3) 512 235 236 72 268 240
conv4-2 (3 × 3) 512 240 240 181 236 216
conv4-3 (3 × 3) 512 220 240 258 340 200
conv5-1 (3 × 3) 512 255 256 261 376 240
conv5-2 (3 × 3) 512 260 260 303 376 288
conv5-3 (3 × 3) 512 257 260 47 176 216

fc1 4096 436 436 1594 656 920
fc2 4096 1169 1169 824 1150 1189
fc3 1000 297 297 405 287 402

Test top-5 accuracy 88.9% 88.9% 88.9% 88.9% 88.9% 88.9%
Execution time t (Nexus 5) 1682 ms 1605 ms 968.8 ms 688.8 ms 725.7 ms

Execution time t (Galaxy Nexus) 7773 ms 6991 ms 3930 ms 3211 ms 2930 ms

0.4 0.5 0.7 1 2
70

75

80

85

90

Execution Time (s)

A
cc

ur
ac

y
%

FastDeepIoT (Galaxy Nexus)
FastDeepIoT (Nexus 5)
DeepIoT
DeepIoT+localMin
DeepIoT+FLOPs

(a) Tradeoff between testing accuracy
and execution time on Nexus 5.

1.5 4 7 10
70

75

80

85

90

Execution Time (s)

A
cc

ur
ac

y
%

FastDeepIoT (Galaxy Nexus)
FastDeepIoT (Nexus 5)
DeepIoT
DeepIoT+localMin
DeepIoT+FLOPs

(b) Tradeoff between testing accuracy
and execution time on Galaxy Nexus.

2 5 10 20 30
70

75

80

85

90

Parameter Proportion (%)

A
cc

ur
ac

y
%

FastDeepIoT (Galaxy Nexus)
FastDeepIoT (Nexus 5)
DeepIoT
DeepIoT+localMin
DeepIoT+FLOPs

(c) Tradeoff between testing accuracy
and compressed parameter size.

0.52 0.75 1 1.5 2.4
70

75

80

85

90

Energy (J)

A
cc

ur
ac

y
%

FastDeepIoT (Galaxy Nexus)
FastDeepIoT (Nexus 5)
DeepIoT
DeepIoT+localMin
DeepIoT+FLOPs

(d) Tradeoff between testing accuracy and
energy consumption on Nexus 5.

1 2 4 10
70

75

80

85

90

Energy (J)

A
cc

ur
ac

y
%

FastDeepIoT (Galaxy Nexus)
FastDeepIoT (Nexus 5)
DeepIoT
DeepIoT+localMin
DeepIoT+FLOPs

(e) Tradeoff between testing accuracy and
energy consumption on Galaxy Nexus.

Figure 6: System performance tradeoff for VGGNet on ImageNet dataset

12% to 32%. This shows that we can decently reduce the neu-
ral network execution time by simply expanding the neural
network structure to local execution-time minima. In addi-
tional, DeepIoT+FLOPs can speed up the model execution
time compared with DeepIoT. However, FastDeepIoT still out-
performs DeepIoT+FLOPs by a significant margin. This result
highlights that FLOPs is not a proper estimation of time.

Figure 5a and 5b shows the tradeoff between testing accu-
racy and execution time for different algorithms. FastDeepIoT
consistently outperforms other algorithms by a significant
margin. Furthermore, the execution time characters on differ-
ent hardware can affect the final performance. FastDeepIoT
(Nexus 5/Galaxy Nexus) performs better on its correspond-
ing hardware. DeepIoT+localMin achieves a better tradeoff
compared with DeepIoT. Therefore, utilizing execution-time
local minima is a low-cost strategy to speed up neural net-
work execution. In addition, since FLOPs has different de-
grees of execution time contribution on different hardware,

DeepIoT+FLOPs are not able to achieve a better tradeoff than
DeepIoT on all devices.
Figure 5d and 5e shows the tradeoff between testing ac-

curacy and energy consumption for different algorithms. Al-
though FastDeepIoT is not designed to minimize the energy
consumption, FastDeepIoT still achieves the best tradeoff.
However, we can see that the characters of energy consump-
tion of deep neural network are different from the execution
time. FastDeepIoT with the hardware-specific time models
are not always the most energy-saving method on the cor-
responding hardware. Execution-time local minima cannot
consistently help DeepIoT+localMin to outperform DeepIoT.
Therefore, further studies on understanding and minimizing
deep learning energy consumption are needed.

Figure 5c shows the tradeoff between testing accuracy and
left proportion of model parameters. Since there is no algo-
rithm targeting at minimizing model parameters, all methods
show comparable performances. However, from another per-
spective, the execution time model learnt by FastDeepIoT

Understanding and Optimizing Neural Network Execution Time SenSys ’18, November 4–7, 2018, Shenzhen, China
Table 8: DeepSense (hidden units) on HHAR dataset.

No Execution Time Model Nexus 5 Galaxy Nexus
Layer Original DeepIoT DeepIoT+localMin DeepIoT+FLOPs tmin FastDeepIoT FastDeepIoT

conv1a conv1b (2 × 9) 64 64 20 19 20 20 26 25 4 4 16 8 16 16
conv2a conv2b (1 × 3) 64 64 20 14 20 16 19 17 4 4 8 12 20 16
conv3a conv3b (1 × 3) 64 64 23 23 24 24 22 22 4 4 16 16 16 16

conv4 (2 × 8) 64 10 12 9 4 12 16
conv5 (1 × 6) 64 12 12 13 4 16 16
conv6 (1 × 4) 64 17 18 18 4 12 16

gru1 120 27 27 11 1 15 10
gru2 120 31 31 15 1 17 10

Test accuracy 94.6% 94.7% 94.7% 94.7% 16.7% 94.7% 94.7%
Execution time t (Nexus 5) 26.2 ms 19.5 ms 17.9 ms 18.3 ms 14.1 ms 15.3 ms 15.8 ms

t − tmin (Nexus 5) 12.1 ms 5.4 ms 3.8 ms 4.2 ms 1.2 ms 1.7 ms
Execution time t (Galaxy Nexus) 70.9 ms 30.1 ms 27.4 ms 28.2 ms 18.4 ms 22.6 ms 22.0 ms

t − tmin (Galaxy Nexus) 52.5 ms 11.7 ms 9.0 ms 9.8 ms 4.2 ms 3.6 ms

14 15 17 20 22
84

86

88

90

92

94

Parameter Proportion (%)

A
cc

ur
ac

y
%

FastDeepIoT (Galaxy Nexus)
FastDeepIoT (Nexus 5)
DeepIoT
DeepIoT+localMin
DeepIoT+FLOPs

(a) Tradeoff between testing accuracy
and execution time on Nexus 5.

18 20 25 30 35
84

86

88

90

92

94

Execution Time (ms)

A
cc

ur
ac

y
%

FastDeepIoT (Galaxy Nexus)
FastDeepIoT (Nexus 5)
DeepIoT
DeepIoT+localMin
DeepIoT+FLOPs

(b) Tradeoff between testing accuracy
and execution time on Galaxy Nexus.

0.1 1 5 10 20
84

86

88

90

92

94

Parameter Proportion (%)

A
cc

ur
ac

y
%

FastDeepIoT (Galaxy Nexus)
FastDeepIoT (Nexus 5)
DeepIoT
DeepIoT+localMin
DeepIoT+FLOPs

(c) Tradeoff between testing accuracy
and compressed parameter size.

3 5 10 15 20
84

86

88

90

92

94

Energy (mJ)

A
cc

ur
ac

y
%

FastDeepIoT (Galaxy Nexus)
FastDeepIoT (Nexus 5)
DeepIoT
DeepIoT+localMin
DeepIoT+FLOPs

(d) Tradeoff between testing accuracy and
energy consumption on Nexus 5.

5 10 15 35
84

86

88

90

92

94

Energy (mJ)

A
cc

ur
ac

y
%

FastDeepIoT (Galaxy Nexus)
FastDeepIoT (Nexus 5)
DeepIoT
DeepIoT+localMin
DeepIoT+FLOPs

(e) Tradeoff between testing accuracy and
energy consumption on Galaxy Nexus.

Figure 7: System performance tradeoff for DeepSense on HHAR dataset
empowers existing compression algorithms to reduce more
execution time with almost the same amount of parameters.
5.2.2 Large-scale image recognition on ImageNet. This is

a large-scale vision based task, image recognition based on
a high-resolution camera. During this experiment, we use
ImageNet as our training and testing dataset. The ImageNet
dataset consists of 1.2 million 224 × 224 color images in 1000
classes with 100,000 images for testing.
During the evaluation, we still use VGGNet structure as

the original network structure. The detailed structures of best
compressed models without accuracy degradation of all algo-
rithms are shown in Table 7. Note that the original VGGNet
for 224×224 colour image input is too large for running on two
testing hardware. FastDeepIoT achieves the best performance
on the execution time among all methods. Compared with
the state-of-the-art DeepIoT method, FastDeepIoT can further
reduce the execution time by 59% to 62%. DeepIoT+localMin
still outperforms DeepIoT by reducing around 5% to 10% of
execution time. In addition, FastDeepIoT can further reduce
25% to 29% of execution time compared with DeepIoT+FLOPs.

Figure 6a and 6b shows the tradeoff between testing top-5
accuracy and execution time for all algorithms. FastDeepIoT
consistently outperforms all other algorithms by a signifi-
cant margin. With the help of execution-time local minima,

DeepIoT+localMin can still outperform DeepIoT in all cases.
DeepIoT+FLOPs performs better than DeepIoT in this case.
Figure 6d and 6e illustrates the tradeoff between testing

top-5 accuracy and energy consumptions. FastDeepIoT out-
performs all algorithms with a large margin. However, Fast-
DeepIoT with the Galaxy Nexus execution time model is not
the most energy-saving compression method on the Galaxy
Nexus device. Also, DeepIoT+localMin cannot consistently
outperforms DeepIoT on energy saving. These two observa-
tions witness the discrepancies between the execution time
and energy modeling on mobile devices. Figure 6c shows
the tradeoff between testing accuracy and left proportion of
model parameters. Again, all methods show the similar trade-
off, which indicates that FastDeepIoT is a parameter-efficient
method on execution time reduction.

5.2.3 Heterogeneous human activity recognition. This is a
human-centric context sensing application, recognizing hu-
man activities with accelerometer and gyroscope. Especially,
we are considering the heterogeneous human activity recog-
nition (HHAR). This task focuses on the generalization ability
with human who has not appeared in the training dataset.
During this experiment, we use the dataset collected by Allan
et al. [30]. During this evaluation, we use DeepSense struc-
ture as the original network structure [34]. Table 8 illustrates

SenSys ’18, November 4–7, 2018, Shenzhen, China S. Yao et al.

the detailed structure of the original network and final com-
pressed networks generated by four algorithms with no degra-
dation on testing accuracy. As shown in Table 8, FastDeepIoT
achieves the best performance on two devices with the cor-
responding execution time models. Compared with DeepIoT,
FastDeepIoT can further reduce the model execution time by
22% to 42%. During the compressing process, we observe that
all compressed models tend to approach a model execution
time lower bound, which has not been seen in the previous
two experiments. In order to obtain the lower bound, we build
a DeepSense structure with all hidden units that equal to 1,
and then applies Algorithm 2 to find the structure that trig-
gers local minimum. The resulted structure is illustrated in
Table 8 denoted by tmin. If we calculate the deductible model
execution time by subtracting tmin from the model execution
time, compared with DeepIoT, FastDeepIoT can reduce the
deductible execution time by 69% to 78%.
Furthermore, we can attempt to deduce the fundamental

cause of the lower bound with our execution time model. As
shown in (6), the execution time of recurrent layer is partially
controlled by the number of step, which can be interpreted as
an initialization overhead for each step in the recurrent layer.
We can use an example to illustrate the relationship between
the step overhead and this lower bound. In our experiment,
there are 20 steps in the GRU. The coefficient of step on Nexus
5 is 0.666 ms. Therefore, the lower bound is 14.1 ≈ 20 × 0.666
ms. Thus, only algorithms dealing with reducing recurrent-
layer steps can help further reducing themodel execution time.
Unfortunately, to the best of our knowledge, there is no ex-
isting work that solves this problem. However, our empirical
observation and execution time model reveal an interesting
problem that requires future research.

The tradeoffs between testing accuracy and execution time
for different algorithms are illustrated in Figure 7a and 7b.
FastDeepIoT still achieves the best tradeoff for all cases. The
tradeoffs between testing accuracy and energy consumption
are illustrated in Figure 7d and 7e. FastDeepIoT performs
better than all other baselines in almost all cases. The trade-
offs between testing accuracy and remanining proportion of
model parameters are illustrated in Figure 7c. All algorithms
show comparable results.
6 RELATEDWORK
A key direction in embedded sensing literature is to speed
up progressively more complex and interesting applications
on resource-constraint embedded and mobile devices. Recent
studies start focusing on speeding up deep neural networks
through model compression. Han et al. propose a magnitude-
based compression algorithm, illustrating promising results
on resource-efficient deep neural networks with model com-
pression [13]. Bhattacharya et al. design a sparse-coding and
matrix factorization based solution to factorize neural net-
works into low-complexity structure for reducing resource

consumption [3]. Yao et al. propose a reinforcement learning
based adaptive dropout solution to explore the less-redundant
network structure for mobile and embedded devices [38]. All
these previous compression algorithms focus on reducing the
model parameters, while taking execution time speed-up as a
by-product. Therefore, these compression methods inevitably
show inferior performance on execution time reduction. To
the best of our knowledge, FastDeepIoT is the first frame-
work to understand the impact of changing neural network
structure on model execution time, and to empower exist-
ing compression algorithms to reduce the execution time on
mobile and embedded devices properly.
7 CONCLUSION AND FUTUREWORK
In this paper, we introduced FastDeepIoT, a framework for
understanding and minimizing neural network execution
time on mobile and embedded devices. We proposed a tree-
structured linear regression model to figure out the causes of
execution-time nonlinearity and to interpret execution time
through explanatory variables. Furthermore, we utilized the
execution time model to rebalance the focus of existing struc-
ture compression algorithms to reduce the overall execution
time properly. We evaluated FastDeepIoT with three repre-
sentative sensing tasks on two devices, where FastDeepIoT
outperformed the state-of-the-art algorithms on reducing ex-
ecution time and energy consumption with a large margin.

This work is just a first step into the exploration of neural
network compression for performance optimization. More
profiling results are needed with the different choices of
hardware, OS versions, load factors, power scaling, and deep
learning libraries. Currently, FastDeepIoT can only support
deep learning structure compression algorithms. More work
is needed to support other deep learning compression meth-
ods, such as parameter quantization and pruning [13]. The
execution time model shows that the setup overhead of recur-
rent layers imposes a lower bound on efficacy of compression.
It is a function of recurrent neural network steps, offering
another dimension to compress for speeding up recurrent
layers. These insights offer avenues for future research on
system performance oriented neural network compression
for sensing applications.
ACKNOWLEDGMENTS
Research reported in this paper was sponsored in part by
NSF under grants CNS 16-18627 and CNS 13-20209 and in
part by the Army Research Laboratory under Cooperative
Agreements W911NF-09-2-0053 and W911NF-17-2-0196. The
views and conclusions contained in this document are those
of the authors and should not be interpreted as representing
the official policies, either expressed or implied, of the Army
Research Laboratory, NSF, or the U.S. Government. The U.S.
Government is authorized to reproduce and distribute reprints
for Government purposes notwithstanding any copyright
notation here on.

Understanding and Optimizing Neural Network Execution Time SenSys ’18, November 4–7, 2018, Shenzhen, China

REFERENCES
[1] Tensorflow benchmark tool. https://github.com/tensorflow/tensorflow/

tree/r1.4/tensorflow/tools/benchmark.
[2] Tensorflow mobile. https://www.tensorflow.org/mobile/mobile_intro.
[3] S. Bhattacharya and N. D. Lane. Sparsification and separation of deep

learning layers for constrained resource inference on wearables. In
Proceedings of the 14th ACM Conference on Embedded Network Sensor
Systems CD-ROM, pages 176–189. ACM, 2016.

[4] L. Breiman. Random forests. Machine learning, 45(1):5–32, 2001.
[5] L. Breiman. Classification and regression trees. Routledge, 2017.
[6] N. Bui, A. Nguyen, P. Nguyen, H. Truong, A. Ashok, R. Deterding,

and T. Vu. Pho2: Smartphone based blood oxygen level measurement
systems using near-ir and red wave-guided light. In Proceedings of the
15th ACM Conference on Embedded Network Sensor Systems. ACM, 2017.

[7] B. Chen, V. Yenamandra, and K. Srinivasan. Tracking keystrokes using
wireless signals. In Proceedings of the 13th Annual International Confer-
ence on Mobile Systems, Applications, and Services, pages 31–44. ACM,
2015.

[8] H. Drucker, C. J. Burges, L. Kaufman, A. J. Smola, and V. Vapnik. Support
vector regressionmachines. InAdvances in neural information processing
systems, pages 155–161, 1997.

[9] M. Eichelberger, K. Luchsinger, S. Tanner, and R. Wattenhofer. Indoor
localization with aircraft signals. In Proceedings of the 15th ACM Con-
ference on Embedded Network Sensor Systems, 2017.

[10] J. H. Friedman. Greedy function approximation: a gradient boosting
machine. Annals of statistics, pages 1189–1232, 2001.

[11] P. Georgiev, S. Bhattacharya, N. D. Lane, and C. Mascolo. Low-resource
multi-task audio sensing for mobile and embedded devices via shared
deep neural network representations. Proceedings of the ACM on Inter-
active, Mobile, Wearable and Ubiquitous Technologies, 1(3):50, 2017.

[12] R. B. Girshick. Fast r-cnn. 2015 IEEE International Conference on Com-
puter Vision (ICCV), pages 1440–1448, 2015.

[13] S. Han, H. Mao, and W. J. Dally. Deep compression: Compressing deep
neural networks with pruning, trained quantization and huffman coding.
arXiv preprint arXiv:1510.00149, 2015.

[14] Y. He, X. Shen, Y. Liu, L. Mo, and G. Dai. Listen: Non-interactive lo-
calization in wireless camera sensor networks. In Real-Time Systems
Symposium (RTSS), 2010 IEEE 31st, pages 205–214. IEEE, 2010.

[15] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand,
M. Andreetto, and H. Adam. Mobilenets: Efficient convolutional neural
networks for mobile vision applications. CoRR, abs/1704.04861, 2017.

[16] F. N. Iandola, M. W. Moskewicz, K. Ashraf, S. Han, W. J. Dally, and
K. Keutzer. Squeezenet: Alexnet-level accuracy with 50x fewer parame-
ters and <1mb model size. CoRR, abs/1602.07360, 2016.

[17] N. D. Lane, P. Georgiev, and L. Qendro. Deepear: robust smartphone
audio sensing in unconstrained acoustic environments using deep learn-
ing. In Proceedings of the 2015 ACM International Joint Conference on
Pervasive and Ubiquitous Computing, pages 283–294. ACM, 2015.

[18] K. Langendoen and N. Reijers. Distributed localization in wireless sensor
networks: a quantitative comparison. Computer Networks, 43(4):499–518,
2003.

[19] P. Lazik, N. Rajagopal, O. Shih, B. Sinopoli, and A. Rowe. Alps: A
bluetooth and ultrasound platform for mapping and localization. In
Proceedings of the 13th ACM Conference on Embedded Networked Sensor
Systems, pages 73–84. ACM, 2015.

[20] Y. LeCun, Y. Bengio, and G. Hinton. Deep learning. nature, 521(7553):436,
2015.

[21] C.-Y. Li, Y.-C. Chen, W.-J. Chen, P. Huang, and H.-h. Chu. Sensor-
embedded teeth for oral activity recognition. In Proceedings of the 2013
international symposium on wearable computers, pages 41–44. ACM,
2013.

[22] M. Mirshekari, S. Pan, P. Zhang, and H. Y. Noh. Characterizing wave
propagation to improve indoor step-level person localization using
floor vibration. In Sensors and Smart Structures Technologies for Civil,
Mechanical, and Aerospace Systems 2016, volume 9803, page 980305.
International Society for Optics and Photonics, 2016.

[23] S. Nirjon, J. Gummeson, D. Gelb, and K.-H. Kim. Typingring: A wearable
ring platform for text input. In Proceedings of the 13th Annual Interna-
tional Conference on Mobile Systems, Applications, and Services, pages
227–239. ACM, 2015.

[24] V. Radu, C. Tong, S. Bhattacharya, N. D. Lane, C. Mascolo, M. K. Marina,
and F. Kawsar. Multimodal deep learning for activity and context
recognition. Proceedings of the ACM on Interactive, Mobile, Wearable
and Ubiquitous Technologies, 1(4):157, 2018.

[25] T. Rahman, A. T. Adams, R. V. Ravichandran, M. Zhang, S. N. Patel,
J. A. Kientz, and T. Choudhury. Dopplesleep: A contactless unobtrusive
sleep sensing system using short-range doppler radar. In Proceedings of
the 2015 ACM International Joint Conference on Pervasive and Ubiquitous
Computing, pages 39–50. ACM, 2015.

[26] S. Ren, K. He, R. Girshick, and J. Sun. Faster r-cnn: Towards real-time
object detection with region proposal networks. In Advances in neural
information processing systems, pages 91–99, 2015.

[27] R. Rigamonti, A. Sironi, V. Lepetit, and P. Fua. Learning separable filters.
In Computer Vision and Pattern Recognition (CVPR), 2013 IEEE Conference
on, pages 2754–2761. IEEE, 2013.

[28] K. Simonyan and A. Zisserman. Very deep convolutional networks for
large-scale image recognition. arXiv preprint arXiv:1409.1556, 2014.

[29] J. M. Sorber, M. Shin, R. Peterson, and D. Kotz. Plug-n-trust: practical
trusted sensing for mhealth. In Proceedings of the 10th international
conference on Mobile systems, applications, and services, pages 309–322.
ACM, 2012.

[30] A. Stisen, H. Blunck, S. Bhattacharya, T. S. Prentow, M. B. Kjærgaard,
A. Dey, T. Sonne, and M. M. Jensen. Smart devices are different: Assess-
ing and mitigatingmobile sensing heterogeneities for activity recogni-
tion. In Proceedings of the 13th ACM Conference on Embedded Networked
Sensor Systems, pages 127–140. ACM, 2015.

[31] B. Wei, W. Hu, M. Yang, and C. T. Chou. Radio-based device-free activity
recognition with radio frequency interference. In Proceedings of the 14th
International Conference on Information Processing in Sensor Networks,
pages 154–165. ACM, 2015.

[32] H. Wen, Z. Xiao, N. Trigoni, and P. Blunsom. On assessing the accuracy
of positioning systems in indoor environments. In European Conference
on Wireless Sensor Networks, pages 1–17. Springer, 2013.

[33] Y. Xiang, R. Piedrahita, R. P. Dick, M. Hannigan, Q. Lv, and L. Shang. A
hybrid sensor system for indoor air quality monitoring. In Distributed
Computing in Sensor Systems (DCOSS), 2013 IEEE International Confer-
ence on, pages 96–104. IEEE, 2013.

[34] S. Yao, S. Hu, Y. Zhao, A. Zhang, and T. Abdelzaher. Deepsense: a unified
deep learning framework for time-series mobile sensing data processing.
In Proceedings of the 26th International Conference on World Wide Web.
International World Wide Web Conferences Steering Committee, 2017.

[35] S. Yao, Y. Zhao, H. Shao, A. Zhang, C. Zhang, S. Li, and T. Abdelzaher.
Rdeepsense: Reliable deep mobile computing models with uncertainty
estimations. Proceedings of the ACM on Interactive, Mobile, Wearable
and Ubiquitous Technologies, 1(4):173, 2018.

[36] S. Yao, Y. Zhao, H. Shao, C. Zhang, A. Zhang, S. Hu, D. Liu, S. Liu, L. Su,
and T. Abdelzaher. Sensegan: Enabling deep learning for internet of
things with a semi-supervised framework. Proceedings of the ACM on
Interactive, Mobile, Wearable and Ubiquitous Technologies, 2(3):144, 2018.

[37] S. Yao, Y. Zhao, A. Zhang, S. Hu, H. Shao, C. Zhang, L. Su, and T. Abdelza-
her. Deep learning for the internet of things. Computer, 51(5):32–41,
2018.

https://github.com/tensorflow/tensorflow/tree/r1.4/tensorflow/tools/benchmark
https://github.com/tensorflow/tensorflow/tree/r1.4/tensorflow/tools/benchmark
https://www.tensorflow.org/mobile/mobile_intro

SenSys ’18, November 4–7, 2018, Shenzhen, China S. Yao et al.

[38] S. Yao, Y. Zhao, A. Zhang, L. Su, and T. Abdelzaher. Deepiot: Com-
pressing deep neural network structures for sensing systems with a
compressor-critic framework. In Proceedings of the 15th ACM Conference
on Embedded Network Sensor Systems. ACM, 2017.

[39] H. Zhang, W. Du, P. Zhou, M. Li, and P. Mohapatra. Dopenc: acoustic-
based encounter profiling using smartphones. In Proceedings of the 22nd

Annual International Conference on Mobile Computing and Networking,
pages 294–307. ACM, 2016.

[40] X. Zhang, X. Zhou, M. Lin, and J. Sun. Shufflenet: An extremely efficient
convolutional neural network for mobile devices. CoRR, abs/1707.01083,
2017.

	Abstract
	1 Introduction
	2 Nonlinearities: Evidence and Exploitation
	3 System Design
	3.1 Profiling Module
	3.2 Compression Steering Module

	4 Implementation
	4.1 Hardware
	4.2 Software
	4.3 Architecture

	5 Evaluation
	5.1 Execution time Model
	5.2 Compression Steering Module

	6 Related Work
	7 Conclusion and Future Work
	Acknowledgments
	References

