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Recent proliferation of Internet of Things (IoT) devices with enhanced computing and sensing capabilities has revolutionized
our everyday life. The massive data from these ubiquitous devices motivate the creation of intelligent IoT systems that
can collectively learn. However, labelling data for learning purposes is extremely time-consuming, which greatly hinders
deployment. In this paper, we describe a semi-supervised deep learning framework, called SenseGAN, that can leverage
abundant unlabelled sensing data thereby minimizing the need for labelling effort. SenseGAN jointly trains three components
with an adversarial game: (i) a classifier for predicting labels of input sensing data; (ii) a generator for generating sensing data
samples based on the input labels; and (iii) a discriminator for differentiating the joint data/label distribution between real
samples and partially generated samples from either the classifier or the generator. The classifier and the generator try to
generate fake data/labels that can fool the discriminator. The adversarial game among the three components can mutually
boost their performance, which helps the classifier learn to predict correct labels with unlabelled data in return. SenseGAN
can effectively handle multimodal sensing inputs and easily stabilize the adversarial training process, which helps improve the
performance of the classifier. Experiments on three IoT applications demonstrate the substantial improvements in accuracy
and F1 score under SenseGAN, compared with supervised counterparts trained only on the labelled portion of the data, as
well as other supervised and semi-supervised baselines. For these three applications, SenseGAN requires only 10% of the
originally labelled data, to attain nearly the same accuracy as a deep learning classifier trained on the fully labelled dataset.
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1 INTRODUCTION
The increasing number of interconnected smart “things” heralds the era of pervasive sensing and ubiquitous
computing. Everyday sensing devices have spawned numerous intelligent applications that take advantage of
the resulting large volumes of data. Great progress has been made on exploiting such data, including for health
and wellbeing [3, 5, 12, 16, 24, 36, 39], behavior and activity recognition [6, 7, 30, 31, 33, 42, 49], tracking and
localization [8, 17, 23, 25, 40, 52], crowd and social sensing [43, 44, 50, 51].

At the same time, deep neural networks have greatly changed the way people process human-centric content,
such as images, audio, and text [28]. Recently, deep learning architectures have been proposed for IoT devices
that perform various complex sensing and recognition tasks [47]. Researchers have made illuminating stud-
ies on designing specific structures for IoT tasks [27, 45], applying deep neural networks on diverse sensory
modalities [34, 45], providing deep neural networks with well-calibrated uncertainty measurement [46], and
compressing the neural network models or structures to fit low-end IoT devices [20, 26, 48].

One key link missing from the picture, however, is the ability to effectively take advantage of massive unlabelled
sensory data, to reduce the need for learning from labelled samples. Labelling data is always time-consuming.
This laborious process has become one key factor that hinders researchers and engineers from applying neural
networks to sensing and recognition tasks on IoT devices. IoT applications with a large amount of sensing data
therefore call for a semi-supervised deep learning framework to solve the challenge of limited labelled data.
In attacking this problem, we propose SenseGAN, a semi-supervised deep learning framework for IoT appli-

cations. One core feature of SenseGAN is its capability to leverage unlabelled data for training deep learning
networks. SenseGAN can run on resource-constrained IoT devices without additional time or energy consumption
compared with its supervised counterpart after training on workstations.
SenseGAN is built upon the idea of Generative Adversarial Networks (GANs) [14, 32], a powerful technique

that casts generative modelling as a game between two networks: a generator that produces synthetic data
given some noise sources and a discriminator who discriminates the probabilistic distributions between the
synthetic and true data [14]. A simple extension of GANs can be used as semi-supervised learning by forcing the
discriminator network to output class labels [32].
However, there are three major challenges in applying existing GANs [2, 10, 11, 18, 29, 32] directly as semi-

supervised frameworks for diverse IoT applications.
(1) The vanilla extensions of GANs regard the discriminator network as both discriminator and classifier [2, 10, 18,

32], which inevitably requires the discriminator network to possess higher network complexity compared with
a normal deep learning classifier. This higher complexity often limits its suitability for resource-constrained
IoT devices due to the accompanying high energy consumption and execution time requirements.

(2) The original GANs suffer from training instability [10, 11, 29, 32]. For training a GAN framework with
a specifically designed neural network for an arbitrary IoT application, consistently stable training is an
important and challenging factor. Noise caused by training instability can mislead the classifier and hurt the
final predictive accuracy of the resulting system.

(3) The discriminator and generator in vanilla GANs are not specifically designed for multimodal sensing
data [2, 10, 11, 18, 29, 32]. They cannot effectively handle multiple sensing inputs from IoT applications and
will cause performance degradation of the classifier.
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Therefore, inspired by recent advances of GANs and related studies on deep neural networks [2, 11, 18, 22, 29],
we design a novel semi-supervised learning framework, SenseGAN, that directly allows an existing deep learning
classifier for an IoT application to leverage unlabelled sensing data. No additional time or energy consumption is
required after the training process, compared with the corresponding supervised learning case.
Specifically, we adopt the idea of enabling a discriminator to differentiate the joint data/label distributions

between the real data/label samples and the partially generated data/label samples made by either the generator
or the classifier. Such design can easily decouple the functionalities of discriminator and classifier into two
separate neural networks. For an IoT application, users can design their own neural network structure for
classification and replace the classifier in the SenseGAN framework with users’ own design for the purpose
of semi-supervised learning. The adversarial game among the discriminator, generator, and classifier mutually
enhances the performance of all automatically.

In order to stabilize the semi-supervised learning process of SenseGAN, on one hand, we use the Wasserstein
metric, also called Earth mover’s distance, as the objective function of the discriminator instead of the Jensen-
Shannon divergence that may cause numerical instability [2]. On the other hand, we use the Gumbel-Softmax
function for categorical representations to eliminate the non-differentiable problem of traditional categorical
variables [22]. These two changes greatly improve training stability as well as the final predictive performance.
In addition, we also design the specific neural network structures for the discriminator and generator that are
suitable for multimodal sensor inputs from IoT applications.
We demonstrate the effectiveness and the efficiency of SenseGAN using the following three representative

problems in IoT applications, which illustrate the potential for solving different tasks with the same neural-network
based semi-supervised learning framework:
(1) Heterogeneous human activity recognition: Human activity recognition itself is a mature problem. Allan et al.

illustrated that state-of-the-art algorithms do not generalize well across users when a new user is tested who
has not appeared in the training set [35]. In this paper, we further test under a more challenging scenario,
where most training data is unlabelled.

(2) User identification with biometric motion analysis: We use the biometric motion, such as walking, biking, and
climbing stairs, for user identification. Similarly, most training data is unlabelled.

(3) Wi-Fi signal based gesture recognition: Recently, radio frequency signals have been explored as another
emerging resource for sensing on IoT devices. This task uses the Received Signal Strength Indicator (RSSI) of
Wi-Fi signals to recognize hand gestures.
Experiments are conducted on the above three IoT tasks with different proportions of labelled and unlabelled

data. SenseGAN attains significant gains compared to all baselines (supervised and semi-supervised, deep-learning
or non-deep-learning). SenseGAN requires only 30 ∼ 200 samples per category (i.e., 10% of the labelled data) to
nearly match the predictive performance of its supervised counterpart trained on a fully labelled dataset. We
also conduct experiments on IoT tasks with extremely limited data. SenseGAN can leverage limited data as both
labelled and unlabelled data in order to boost the predictive performance.
We validate the main design choices of SenseGAN with ablation study, eliminating individual design compo-

nents from the framework to create baselines and showing the impact of removing each component. Experiments
show that design components for stabilizing training and handling multimodal sensing inputs jointly enhance
SenseGAN to better leverage unlabelled data for training. Energy and time consumption are also measured on an
IoT computing platform, called Edison [1]. SenseGAN does not need a longer execution time or higher energy
consumption compared with its supervised counterpart.

The rest of this paper is organized as follows. Section 2 introduces some preliminary background and related
work. We describe the technical details of SenseGAN in Section 3. The evaluation is conducted in Section 4.
Finally, we conclude in Section 5.
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2 PRELIMINARIES
In this section, we give a preliminary overview of GANs [14], GANs with the Wasserstein metric [2, 18], the
Gumbel-Softmax function for categorical representations [22], and deep learning classification models for IoT
applications, all of which serve as key design ingredients of our SenseGAN framework.

2.1 Generative Adversarial Networks (GANs)
The idea of GANs is to design a game between two competing networks. The generator network takes the noise
vectors as inputs and generates data samples. The discriminator network takes either a generated sample or a
real data sample, and distinguishes between the two. The generator is trained to fool the discriminator [14].
The game between generator G and discriminator D can be formulated as the minmax objective:

min
G

max
D
Ex∼Pr [log(D (x))] + Ex̃∼Pд [log(1 − D (x̃))], (1)

where Pr is the real data distribution and Pд the generated data distribution implicitly defined by x̃ = G (z),
z ∼ p (z) (the input of generator z is sampled from a simple noise distribution, such as the uniform distribution or
a spherical Gaussian distribution).

If the discriminator is optimal, the training objective function (1) amounts to minimizing the Jensen-Shannon
(JS) divergence between Pr and Pд . In practice, a stochastic lower-bound to the JS divergence is minimized.

2.2 Wasserstein GANs
Since training instability has hindered the deployment of GANs on deeper and more complex neural network
structures, a great amount of research efforts have been made recently to tackle this problem. Arjovsky et
al. [2] argue that Jensen-Shannon divergence are potentially not continuous and thus cannot provide a usable
gradient for the generator. They propose Earth mover’s distance (also called Wasserstein-1 Distance) as the
training objective. Earth mover’s distance is the minimum cost of transporting mass in order to transform one
distribution into the other distribution, where the cost is mass times transport distance. They have shown that the
Earth mover’s distance is continuous everywhere, and differentiable almost everywhere, providing the desirable
property for GANs training.
Wasserstein GAN (WGAN) is thus proposed, and its objective function is constructed by applying the

Kantorovich-Rubinstein duality [38]

min
G

max
D∈D

Ex∼Pr [D (x)] − Ex̃∼Pд [D (x̃)], (2)

where D is the set of 1-Lipschitz functions, Pr and Pд are defined the same as they are in Section 2.1. Then given
the optimal discriminator, WGAN’s training objective function (2) amounts to minimizing the Earth mover’s
distance between Pr and Pд .

Then the remaining question is how to enforce the Lipschitz constraint on the discriminator. Arjovsky et al. [2]
make the Lipschitz constraint by clipping the weights within a compact space [−c, c]. This results in a subset of
k-Lipschitz functions for k depending on the space boundary parameter c and the structure of the discriminator.

However Gulrajani et al. [18] claim that weight clipping can still cause optimization difficulties such as capacity
underuse and gradients exploding or vanishing. Then an alternative is proposed: a differentiable function is
1-Lipschitz if and only if it has gradients with norm less than or equal to 1 everywhere. Since an exact constraint
is not easily tractable, Gulrajani et al. enforce a soft version by making gradient penalty on sampled points. The
loss function for the discriminator then becomes:

Ex̃∼Pд [D (x̃)] − Ex∼Pr [D (x)] + λ · Ex̂∼Px̂
[
(∥∇D (x̂)∥2 − 1)2

]
, (3)
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tion with τ = 10.

Fig. 1. The expectation and sample of Categorical and Gumbel-Softmax distribution.

where gradient penalties are made by taking samples x̂ from straight lines between points in the data distribution
Pr and the generator distribution Pд :

ϵ ∼ U [0, 1],x ∼ Pr , x̃ ∼ Pд ,
x̂ = ϵx + (1 − ϵ )x̃ , (4)

whereU [0, 1] is the uniform distribution from 0 to 1.
The WGAN with gradient penalty has achieved the state-of-the-art performance on multiple generative tasks,

such as images and text generations. To the best of our knowledge, SenseGAN is the first study to adopt WGAN
with gradient penalty training strategy into the semi-supervised learning.

2.3 Gumbel Softmax
Discrete variables sampled from categorical distribution is a powerful technique for representing categorical
distributions. In our framework, the discriminator in SenseGAN is designed to differentiate the joint data/label
distributions between partially generated samples and real samples, which naturally requires taking discrete
variables for categorical representation as inputs.

However, neural networks with discrete variables involving sampling from categorical distributions are non-
differentiable, making them difficult to train with the backpropagation algorithm. Existing stochastic gradient
estimation requires variance reduction techniques to stabilize the training process. In order to alleviate the
problem of high-variance gradient estimation in neural networks with discrete variables, a continuous relaxation
of the discrete variable is needed.
Recent study on Gumbel-Softmax defines a continuous distribution over the simplex that can approximate

samples from a categorical distribution [22], where the theoretical analysis has been made.
We assume categorical samples are encoded as l-dimensional one-hot vectors lying on the corners of the

(l − 1)-dimensional simplex, ∆l−1. o1, · · · ,ol are multinomial logits for l categories. We can therefore generate
l-dimensional sample vectors y:

yi =
exp((oi + дi )/τ )∑l
j=1 exp((oj + дj )/τ )

, (5)

where д1, · · · ,дl are i.i.d. samples drawn from Gumbel(0, 1). The Gumbel(0, 1) distribution can be sampled using
inverse transform sampling by drawing u ∼ U [0, 1] and computing д = − log(− log(u)).

As the softmax temperature τ approaches 0, samples from the Gumbel-Softmax distribution turns into one-hot
representations, and its expectation approaches the corresponding categorical distribution from the uniform
distribution. The expectation and sample of Gumbel-Softmax distribution with different softmax temperature τ
are illustrated in Figure 1. In SenseGAN, the multinomial logits of the classifier go through the Gumbel-Softmax
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Fig. 2. The illustration of SenseGAN components.

before being fed into the discriminator, which further improves the training stability and the final predictive
performance.

2.4 Deep Learning for IoT Applications
Recently, deep learning is emerging as a powerful learning component in IoT applications [47]. These highly
capable models are good at making sophisticated mappings between unstructured data such as sensor inputs
and target quantities, which can hardly be achieved by traditional machine learning models. Lane et al. [27]
build a multilayer perceptron improving the performance of multiple audio sensing tasks. Yao et al. [45] design a
unified deep learning framework for IoT tasks that can fuse multiple sensory modalities and extract temporal
relationships along sensor inputs. However, to the best of our knowledge, all the previous works focus on the
supervised learning scenario, which fails to utilize the abundant unlabelled data in IoT applications.

3 SENSEGAN FRAMEWORK
In this section, we introduce our SenseGAN semi-supervised learning framework for IoT applications. We
separate our descriptions into five parts. First, we provide an overview of the SenseGAN framework with its
internal interactions among different components. Next, we introduce our designs of generator, discriminator,
and classifier in SenseGAN respectively. In the end, we discuss SenseGAN’s training process.

3.1 SenseGAN Components Overview
The SenseGAN framework consists of three basic components. We assume the following notations: X denotes
the input sensing data tensor, y the one-hot categorical representation, and z the random vector drawn from the
random Gaussian distribution. The relationship among these three components is illustrated in Figure 2.
(1) Generator X̃ ∼ G (z, y): The generator takes a random vector and a corresponding one-hot categorical

representation as the input, and generates a sensing data tensor X̃ that “fools" the discriminator into thinking
that it is the real sensing data.

(2) Classifier ỹ ∼ C (X): The classifier takes a sensing data tensor as the input and generates classification result
ỹ that can “fool" the discriminator into thinking that it is the real data label. If the sensing data tensor happens
to be from the limited amount of labelled data, the classification result ỹ should also fit the supervision of
label y.

(3) Discriminator D (X/X̃, y/ỹ): The discriminator takes a pair of sensing data and corresponding one-hot
categorical representation as the input. It gives each input pair a score for indicating whether the pair is
sampled from the real labelled dataset or partially generated by other components.
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The intuition of how our SenseGAN framework is able to leverage unlabelled data to enhance its predictive
power is as follows. The discriminator tries to discriminate real data/label samples and the partially generated
data/label samples; the generator attempts to generate and recover the real sensing inputs based on the categorical
information that can fool the discriminator; and the classifier tries to predict the label of sensing inputs that can
both fit the supervision and fool the discriminator. During the adversarial game among the three components
under the training process, the resulting three improved components can mutually boost performance. When the
training reaches the optimality, the discriminator will have learnt the true joint probability distribution of the
input sensing data and their corresponding labels for both the labelled and unlabelled samples. The classifier will
have learnt the true conditional probability of labels given the sensing input.

All three components are represented by neural networks. We will discuss their specific structures for dealing
with the multimodal sensing inputs in detail in the following subsections. In addition, the structure of the classifier
can be task-specific or unified with diverse IoT applications [45]. We therefore will not introduce the detailed
structure for the classifier but only discuss its output representation. We treat the classifier as an modular and
customizable component for IoT applications when using SenseGAN for semi-supervised learning.

3.2 SenseGAN Generator
The goal here is to generate sensing data tensor by modelling the conditional probability of sensing data given
the one-hot label representation. The randomness of generated samples is controlled by the input random vectors.
We denote the generated sensing data tensor as X̃ ∈ Rn×t×f ×d , where n is the number of sensors used in an

IoT application, t is the number of time steps, f is the length of frequency domain or the number of time points
within a time step, and d is the feature dimension of data on each frequency or time point. We denote the one-hot
label representation as y ∈ Rl , where l is the number of categories of an IoT application. We also denote the input
random vector as z ∈ Rr , where r is the dimension of random vector.

The illustration of SenseGAN generator G (z, y) is shown in Figure 3. The input of generator T0 is the concate-
nated vector of the one-hot label representation y and the random vector z. T0 first goes through a fully-connected
layer for learning a latent representation T1, which is then transformed into a matrix form T2.
Then the generator starts the process of generating sensing data tensor as X̃ ∈ Rn×t×f ×d . We assume that n

sensing data possess a joint latent representation, and the generation process is first going through generating
along the time/frequency dimensions, t and f , with a shared structure and then going through generating the
feature dimension d with individual structures for n sensors.

As shown in Figure 3, T2 goes through multiple deconvolution layers and generates a joint latent representation
along the time and frequency dimensions T3 ∈ R

t×f ×c , where c is the number of filters in the deconvolution layer.
Then the joint representation T3 goes through n independent multiple deconvolution layers for generating the
sensing data tensor for n sensors, X̃ = [X̃1, · · · , X̃n].
The whole generator structure tries to learn the conditional distribution of sensing data given the label

representation P (X|y). It also helps the discriminator to learn the joint data/label distribution P (X, y) and the
classifier to learn the conditional distribution of label given the sensing data P (y|X) during the adversarial game
by leveraging unlabelled data.

3.3 SenseGAN Discriminator
The SenseGAN discriminator aims to differentiate partially generated data/label tuples from the real ones by
modelling the joint data/label distribution.
We again denote the sensing data as X ∈ Rn×t×f ×d , and the one-hot label representation as y ∈ Rl . The

illustration of SenseGAN discriminator D (X, y) with two sensor inputs is shown in Figure 4. The structure for
n sensor inputs can be similarly designed. We first need to generate input X̂ containing both data and label
information. We simply expand label representation y into Y ∈ Rn×t×f ×l with the tiling operation, and then
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Fig. 3. The neural network design of SenseGAN generator.

concatenate X and Y into the generator input X̂ ∈ Rn×t×f ×(d+l ) as shown in Figure 4. These expansion and
concatenation operations can help to merge the data and label information and to balance gradient penalty (3)
between data and label inputs.

The design of discriminator is to first merge the information from multiple sensors and then extract important
relationships along the time and frequency dimensions. Since convolution layers can learn about the long-term
dependency by stacking multiple of them [9], SenseGAN uses full-convolution structure (with fully-connected
layers at the end) instead of the recurrent neural network for speeding up the training process. The empirical
comparison betweem CNN-based and RNN-based discriminator is shown in Section 4.3.
As shown in Figure 4, SenseGAN discriminator first learns a joint representation T1 from multiple sensors

through a convolution layer. Then multiple convolution layers are used to learn the latent representation T2
along the time and frequency dimension. At last, the discriminator generates the score v through multiple fully-
connected layers for determining whether the input X̂ is drawn from real data samples or partially generated by
other components.

The discriminator tries to differentiate whether the input is drawn from real samples or is partially generated
by learning the joint data and label distribution p (X, y). The discriminator structure in Figure 4 tries to fit the
multimodal sensing inputs that exists in IoT applications better.
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3.4 SenseGAN Classifier
As mentioned previously, the SenseGAN classifier, by design, serves as an application-dependent customizable
module, capable of taking the form of any existing neural network classifiers. The classifier can be formulated as
o = C (X), where X ∈ Rn×t×f ×d is the sensing data input, and o ∈ Rl is the multinomial logits for l categories.

However as shown in Figure 2, two other components take categorical representations instead of multinomial
logits as inputs. When the sensing data inputs X have no existing label, the classifier feeds the predictions ỹ as
well as the sensing data X into the discriminator. On the other hand, if the sensing data inputs X have existing
labels, the classifier feeds the predictions ỹ into classification loss with true label y for supervision. We denote
these two predictions as ỹd and ỹl for discriminator input and classification loss input respectively.
Softmax function is a common practice for converting multinomial logits into categorical representations,

which is also our choice for ỹl . However for ỹd , in order to prevent discriminator from differentiating real
or generated samples by just looking at whether the categorical representations are one-hot representations
or categorical distribution, we choose Gumbel-Softmax (5) for converting multinomial logits into categorical
representations, which is introduced in Section 2.3. Compared with sampling from categorical distribution,
Gumbel-Softmax can eliminate non-differentiable operations and prevent using gradient estimation method with
high variance.

3.5 SenseGAN Training
We now discuss the SenseGAN training that involves the aforementioned three components. We denote {(Xl , yl )}
as the labelled dataset and {(Xu )} as the unlabelled dataset.
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The SenseGAN objective function consists of two parts. The first part captures the classifier’s intent to minimize
the classification loss of labelled data, which can be formulated as:

min
C

1
ml

∑
(Xl ,yl )

ℓ
(
y,C (X)

)
(6)

where ℓ(·, ·) denotes the cross entropy loss and C (·) the SenseGAN classifier. The second part is the adversarial
game among the discriminator, the generator, and the classifier. The discriminator tries to distinguish positive
data/label tuples of “real" labelled dataset from negative data/label tuples that are partially generated by the
generator or classifier. At the same time, the generator and classifier try to generate data/label tuples that can
fool the discriminator. Here we provide the formal definition of negative and positive data/label tuples during the
training process.
There are two types of negative data/label tuples. The first type is (X(1)

u ,C (X
(1)
u )), where we sample sensing

data from the unlabelled dataset and generate one-hot label with the SenseGAN classifier. The second type is
(G (z, yд ), yд ), where we randomly generate one-hot label from all possible categories and generate sensing data
with the SenseGAN generator.

The positive data/label tuples are (Xl , yl ), where we directly sample data/label tuples from the labelled dataset.
In order to prevent the discriminator from overfitting the limited labelled dataset by memorizing all of them, we
introduce the pseudo positive data/label tuples, (X(2)

u ,C (X
(2)
u )) when training the discriminator in practice. The

detailed definitions of these negative and positive data/label tuples are summarized in Table 1.
With these definitions, we can formulate the second part of the objective function. We apply the Earth mover’s

distance to formulate the adversarial game, which is similar to the Wasserstein GAN (2).
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(7)

where α is a hyper-parameter for balancing two types of negative tuples with default value 0.5; D is the set of
1-Lipschitz functions;ml ,m(2)

u ,m(1)
u , andmд are the batch sizes of positive, pseudo-positive, and two negative

tuples during training. In SenseGAN, we enforce the Lipschitz constraint by making gradient penalty (3) with λ.
The pseudo positive tuples (X(2)

u ,C (X
(2)
u )) also work as a variance reduction method for the negative tuples

(X(1)
u ,C (X

(1)
u )), which further stabilize the training process [15]. In general, the pseudo positive tuple introduces

a biased distribution into the discriminator. However, the bias is controlled by the batch sizes of positive and
pseudo positive tuples,ml andm(2)

u . In addition, the classifier can often achieve a reasonably good prediction
result quickly, which further reduces the bias. The empirical evaluation of pseudo positive tuple is shown in
Section 4.3.
By combining the two objective functions (6) and (7) with hyper-parameter γ , we can summarize our final

training process. As shown in Algorithm 1, the training proceeds by iteratively updating the parameters of
the discriminator, classifier, and generator. The update of discriminator (Line 3 - Line 8) consists of three parts:
increasing the score of positive tuples, reducing the score of negative tuples, and imposing gradient penalty for
enforcing the Lipschitz constraint. The update of classifier (Line 9 - Line 12) consists of two parts: reducing the
classification loss of labelled data and learning to make prediction that can obtain high score by the discriminator.

The update of generator (Line 13 - Line 16) has only one part: learning to generate sensing data that can obtain
high score by the discriminator so that the discriminator can be fooled to believe that the generated sensing
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Table 1. Definitions of positive and negative data/label tuples.

Postive Tuples Pseudo Postive Tuples
Data sampled from the labelled dataset Xl Data sampled from the unlabelled dataset X(2)

u

Corresponding real label yl Corresponding label generated by the Classifier C (X(2)
u )

Negative Tuples 1 Negative Tuples 2
Data sampled from the unlabelled dataset X(1)

u Corresponding data generated by the Generator G (z, yд )
Corresponding label generated by the Classifier C (X(1)

u ) Randomly generated label yд

Algorithm 1 SenseGAN training process
1: Initialize: discriminator with parameter θD , generator with parameter θG , and classifier with parameter θC .
2: for k training iterations do
3: for kd iterations do
4: Sample (Xl , yl ), (X

(1)
u ), (X(2)

u ), (yд ), ϵ ∼ U [0, 1], and z ∼ N (0, 1)
5: X̄ = ϵ · Xl + (1 − ϵ ) ·G (z, yд )
6: ȳ = Gumbel_so f tmax (ϵ · yl + (1 − ϵ ) · yд )

7: Update θD by descending along its gradient ∇θD

[
α
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∑
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]

8: end for
9: for kc iterations do
10: Sample (Xl , yl ) and (X(1)

i )

11: Update θC by descending along its gradient ∇θC

[
γ
ml

∑
(Xl ,yl ) CE

(
y,C (X)

)
− 1−α

m (1)
u

∑
X(1)
u

D
(
X(1)
u ,C

(
X(1)
u

))]
12: end for
13: for kд iterations do
14: Sample (yд ) and z ∼ N (0, 1)
15: Update θG by descending along its gradient ∇θG

[
− α

mд

∑
yд D

(
G (z, yд ), yд

)]
16: end for
17: end for

data is real. This iterative process can gradually improve the performance of all three components by mutually
boosting themselves with limited labelled supervision and abundant unlabelled data.

4 EVALUATION
In this section, we test SenseGAN on three IoT applications with several sets of experiments evaluating the
effectiveness, the design choices, and the resource consumption of SenseGAN on commodity IoT devices.

4.1 Experiments Overview
For the evaluation, we conduct all our experiments on three different tasks. We next briefly describe these tasks
and introduce the training and testing datasets.
(1) Heterogeneous human activity recognition (HHAR): In this task, we perform a human activity recognition

task with accelerometer and gyroscope measurements. We use the dataset collected by Allan et al. [35]. This
dataset contains readings from two motion sensors (accelerometer and gyroscope). Readings were recorded
when users executed activities scripted in no specific order, while carrying smartwatches and smartphones.
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The dataset contains 9 users, 6 activities (biking, sitting, standing, walking, climbStairup, and climbStairdown),
and 6 types of mobile devices. For this task, accelerometer and gyroscope measurements are classifier inputs,
and activities are used as labels.

(2) User identification with biometric motion analysis (UserID): In this task, we perform user identification with
biometric motion analysis.We classify users’ identity according to accelerometer and gyroscopemeasurements.
We use the same dataset as in the HHAR task. For this task, accelerometer and gyroscope measurements are
classifier inputs, and users’ unique IDs are used as labels.

(3) Wi-Fi signal based gesture recognition (Wisture): In this task, we perform gesture recognition (swipe, push, and
pull) with Received Signal Strength Indicator (RSSI) of Wi-Fi signal. We use the dataset collected by Mohamed
et al. [21]. This dataset contains labeled Wi-Fi RSSI measurements corresponding to three hand gestures
made near a smartphone under different spatial and data traffic scenarios. The Wi-Fi RSSI measurements are
classifier inputs, and gestures are used as labels.
For all the following experiments, the HHAR task performs leave-one-user-out cross-validation. We select 1

out of 9 users as the testing dataset with the left as the training dataset. The UserID and Wisture tasks perform
10-fold cross-validation. Each time we choose 10% data as the testing dataset with the left as the training dataset.
Then we further divide the training dataset into labelled and unlabelled dataset according to the specification of
each experiment.
For all experiments with SenseGAN, we choose DeepSense [45] as the classifier, which is a state-of-the-art

neural network structure designed for IoT applications. The generator and the discriminator usually require
more training steps to achieve better performance. We therefore set kd , kc , and kд in Algorithm 1 to be 5, 1, and 7
respectively without fine-tuning, which consistently achieves decent performance for all three tasks.
4.2 Effectiveness
We first illustrate the effectiveness of SenseGAN at leveraging unlabelled data for IoT applications. We eval-
uate the performance of SenseGAN with different proportions of labelled and unlabelled data, and compare
SenseGAN with supervised deep learning algorithms and other traditional supervised/semi-supervised machine
learning algorithms, which are believed to have better predictive performance with smaller datasets. The baseline
algorithms are as follows:
(1) DeepSense: A state-of-the-art supervised neural network structure designed for IoT applications [45], also

the classifier used in SenseGAN. DeepSense baseline is chosen to show the performance gain of SenseGAN
by leveraging unlabelled data. DeepSense takes the same input as the SenseGAN model, which divides the
sensing data into equal-length time interval followed by Fourier transformation.

(2) SGAN: A general GAN-based semi-supervised deep learning algorithm [32]. The algorithm is not specifically
designed for adapting the IoT sensing data. This baseline is chosen to show the importance of design choices
in SenseGAN that tailor the GAN training method for IoT applications. SGAN also takes the same input as
the SenseGAN model.

(3) RF: The random forests supervised classifier. The input of random forests is the concatenation of popular
time-domain and frequency domain features from [13] and ECDF features [19].

(4) SVM: The support vector machine supervised classifier, with the same feature selection as the RF model.
(5) Semi-RF: A semi-supervised learning algorithm that puts a self-training wrapper on the random forest

classifier [37]. Semi-RF takes the same input as the RF model.
(6) S3VM: Semi-supervised SVMs (S3VMs) with the goal of maximizing the margin of unlabelled data for classifi-

cation [4]. S3VM takes the same input as the SVM model.
4.2.1 IoT Applications with Different Proportions of Labelled Data. We first conduct a series of experiments on
evaluating SenseGAN against baseline algorithms with different proportions of labelled data. The original datasets
for tasks are all labelled data samples. During these experiments, we randomly select p% of training samples as
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labelled data, and treat the rest training samples as unlabelled data. When p = 100%, SenseGAN stops generating
“fake" data. SenseGAN then becomes equivalent to its supervised counterpart, DeepSense. For semi-supervised
algorithms, SenseGAN, Semi-RF, and S3VM, all unlabelled data is used for training. For supervised algorithms,
DeepSense, RF, and SVM, only labelled data is used for training. Please notice that the testing data never appears
in the unlabelled dataset.
The results of three IoT tasks are shown in Figure 5 and 6. Two figures are plotted in log scale along the

p−axis, because we are more interested in the cases with limited labelled data. The performance gains between
semi-supervised and supervised algorithms can be small when the proportion of labelled data p is large.
One interesting observation is that two deep learning methods, SenseGAN and DeepSense, perform almost

consistently better than the traditional machine learning methods even with tiny proportion of labelled data
(with the only exception of DeepSense on the Wisture task). This is mainly attributed to their structures that can
effectively handle the multimodal sensing data in three IoT applications. Performance can be further improved
by our proposed SenseGAN framework. As shown in Figure 5 and 6, SenseGAN shows a significant improvement
on both accuracy and F1 score compared with all baseline algorithms. SenseGAN can achieve within 2% and
0.03 drops on accuracy and F1 score with only 10% of labelled data. In our experiments, 10% of labelled data
equals around 200, 130, and 30 labelled data samples per category for the HHAR, UserID, and Wisture tasks
respectively, which is easily affordable by human labelling. In addition, the existing GAN-based semi-supervised
deep learning method, SGAN, consistently shows an inferior performance compared to SenseGAN in all three
tasks. These experimental results empirically show the effectiveness of our SenseGAN design choices in general.
More ablation study on verifying the design choices of SenseGAN will be shown in Section 4.3.
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(b) The UserID task.
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(c) The Wisture task.

Fig. 5. The accuracy of models with p% of labelled data for three IoT applications.
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(b) The UserID task.
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Fig. 6. The F1 Score of models with p% of labelled data for three IoT applications.

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 2, No. 3, Article 144. Publication date: September 2018.



144:14 • S. Yao et al.

0 0.5 1 2 3 5 10 25 100
75

80

85

90

95

Proportion of unlabelled data (q%)

A
cc

ur
ac

y 
(%

)

 

 

p=10%
p=5%
p=3%
p=2%
p=1%

(a) The HHAR task.
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(b) The UserID task.
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(c) The Wisture task.
Fig. 7. The accuracy of models with q% of unlabelled data for three IoT applications.
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Fig. 8. The F1 Score of models with q% of unlabelled data for three IoT applications.

SenseGAN also attains a great improvement compared with its supervised counterpart, DeepSense. However
the other two traditional semi-supervised methods, Semi-RF and S3VM, only achieve tiny improvements compared
with their supervised counterparts, RF and SVM. Semi-RF even performs worse than RF on the Wisture task.
These observations indicate that SenseGAN can effectively leverage the unlabelled multimodal sensor data for
improving the complex IoT recognition tasks.
4.2.2 IoT Applications with Different Proportions of Unlabelled Data. We have shown that SenseGAN can utilize
labelled data efficiently. It can consistently achieve the best performance with a large margin on three IoT tasks
with different proportions of labelled data. However, we have not investigated whether SenseGAN can utilize
unlabelled data efficiently. Next, we conduct a series of experiments on performing semi-supervised learning
with different proportions of unlabelled data to explore the effect of unlabelled-data sizes on the SenseGAN
predictive performance.

For these experiments, we randomly selectp = [1, 2, 3, 5, 10]% of training samples as labelled data, and randomly
select q% of the remaining training samples as unlabelled data, and discard all the rest training samples. We
evaluate only SenseGAN here, because Semi-RF and S3VM show little improvement on three IoT tasks even with
q = 100% in Section 4.2.1.

When q = 0%, the model is trained with only labelled data, which is equivalent to the DeepSense model.
When q = 100%, all experiments are fully semi-supervised, which are the same as those in Section 4.2.1, because
all data samples other than p% of labelled data are used as unlabelled data for training. As shown in Figure 7
and 8, SenseGAN with q = 25% can attain almost the same predictive performance compared with q = 100%
on both accuracy and F1 score. Even when the proportion of unlabelled data is tiny, such as q = 0.5% or 1%,
SenseGAN can still achieve decent improvements compared with its supervised counterpart. This indicates that
SenseGAN can efficiently use both labelled and unlabelled data to effectively improve the performance of the
neural network classifier. Due to the scale of y-axis in Figure 7 and 8, it seems that, when the proportion of labelled
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Fig. 9. SenseGAN-LaUL with p% labelled data as unlabelled data.

Table 2. Different design choices with p = 10% and q = 100%.
(a) Accuracy.

SenseGAN SG-simpG SG-simpD SG-rnnD SG-noGumbel SG-noWGAN SG-noPseudo DeepSense
HHAR 0.948 0.932 0.926 0.935 0.918 0.920 0.930 0.920
UserID 0.971 0.950 0.946 0.949 0.917 0.916 0.917 0.942
Wisture 0.973 0.973 0.973 0.943 0.943 0.953 0.914 0.903

(b) F1 Score.

SenseGAN SG-simpG SG-simpD SG-rnnD SG-noGumbel SG-noWGAN SG-noPseudo DeepSense
HHAR 0.927 0.915 0.903 0.894 0.882 0.878 0.913 0.883
UserID 0.959 0.941 0.939 0.938 0.911 0.914 0.898 0.923
Wisture 0.973 0.973 0.973 0.939 0.939 0.942 0.884 0.889

data p is large, increasing the proportion of unlabelled data q can only make limited improvement. However, the
unlabelled data does play an important role in SenseGAN from the perspective of reducing predictive error. Take
UserID task with p = 10% as an example, SenseGAN reduces the error of accuracy from 5.8%(= 100% − 94.2%) to
2.9%(= 100% − 97.1%) and the error of F1 score from 0.077(= 1 − 0.923) to 0.041(= 1 − 0.959) by increasing q
from 0% to 100%, which greatly reduces the errors by around 50%.

4.2.3 IoT Applications with Labelled Data as Unlabelled Data (LaUL). In a lot of proof-of-concept IoT applications,
the total amount of data is limited. Researchers probably want to label all existing samples for training. However,
concerns still exist that neural networks may cause performance degradation as shown in Figure 5c and 6c. In this
experiment, we try to fully leverage the limited amount of data samples with SenseGAN by using them as both
labelled and unlabelled data. Since the classifier is learned from both labelled supervision and joint interactions
with the discriminator and generator in SenseGAN. Using labelled data as unlabelled data can enhance the
discriminator and generator, and therefore boost the performance of classifier in return.
During the experiments, we randomly select p% of original training data as labelled data and discard all the

rest training samples. These p% of data is used as both labelled and unlabelled data for training SenseGAN in the
manner just described in Algorithm 1.

In Figure 9, we plot the results of training SenseGAN with Labelled data as UnLabelled data, called SenseGAN-
LaUL, with p = [1, 2, 3, 5, 10]%, each accompanied with a upper and a lower bound. The upper bound is training
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SenseGAN with all left training samples as unlabelled data (i.e., q = 100% in Section 4.2.2). The lower bound is
the DeepSense model trained on only labelled data (i.e., q = 0% in Section 4.2.2).
SenseGAN-LaUL attains a considerable improvement on all the three IoT tasks compared with the upper

and lower bound. SenseGAN-LaUL can almost always achieve more than 50% of the maximum gain, i.e., the
middle point between the upper and lower bound, on three tasks with both accuracy and F1 score. Therefore,
SenseGAN-LaUL is a good choice for training IoT applications with extremely limited data. Performance agains
show that SenseGAN can efficiently utilize labelled and unlabelled data to effectively improve the predictive
performance of neural network classifier on IoT tasks.

4.3 Ablation Study for Design Choices
The previous experiments focus on evaluating the performance of SenseGAN for semi-supervised learning on IoT
tasks. Recall that we have many design choices within the SenseGAN structure in Section 3. In this subsection, we
evaluate these design choices of SenseGAN against baseline models generated by deleting one design component
from the SenseGAN model at a time and measuring the impact. This approach results in the following baselines:
(1) SG-noWGAN : This model does not train the adversarial game with the Earth mover’s distance, defined by

Equation (3). Instead it uses the original less stable objective function, defined by Equation (1).
(2) SG-noGumbel: This model uses softmax instead of Gumbel-Softmax when feeding the output of classifier into

the discriminator, which is discussed in Section 3.4.
(3) SG-noPseudo: This model deletes the pseudo positive data/label tuples (X(2)

u ,C (X
(2)
u )) in the training objective

function (7).
(4) SG-simpG: This model uses a simple structure for the generator. As shown in Figure 3, instead of individual

deconvolution layers for each sensor, this model uses single but larger deconvolution layers to generate
outputs for all sensors.

(5) SG-simpD: This model uses a simple structure for the discriminator. As shown in Figure 4, instead of individual
convolution layers for each sensor, this model uses single but larger convolution layers to extract the
information from multiple sensor inputs altogether.

(6) SG-rnnD: Instead of using a full-convolution structure, this model uses the DeepSense structure (with RNN
layers) [45] as the discriminator. To best of our knowledge, existing deep learning libraries do not support
high-order gradient for RNN-based structure. Therefore, we use weight clipping [2] instead of the gradient
penalty [18] for the WGAN training.
The baseline models SG-simpG and SG-simpD are designed such that they each have the same number of

parameters as SenseGAN.
We evaluate all baseline algorithms as well as SenseGAN and DeepSense on the three IoT tasks with an

illustrating case that randomly selects p = 10% of training samples as labelled data and regards all the rest as
unlabelled data, i.e., q = 100%. SenseGAN and DeepSense work as the “upper bound" and the “lower bound"
respectively. All baseline algorithms should perform better than the supervised counterpart by leveraging
unlabelled data. SenseGAN should perform better than all baseline algorithms, if all design choices of SenseGAN
are reasonable.

Experiment results are shown in Table 2. As seen, SenseGAN outperforms all baseline algorithms in all three
tasks, providing strong empirical supports for our design choices. The Wisture takes only one sensor as input, so
the structure of SenseGAN, SG-simpG, and SG-simpD are identical in this task. These three structures therefore
have the same predictive performance for the Wisture task. However, SG-noGumbel and SG-noWGAN can easily
perform worse than the supervised counterpart, DeepSense. This indicates that training instability can also affect
the final performance of classifier by providing noisy supervision during the adversarial training. SG-simpG
and SG-simpD also suffer from performance degradation. Therefore, our specifically designed structures for
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Fig. 10. Running time and energy consumption of HHAR
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Fig. 11. Running time and energy consumption of UserID
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(b) Energy consumption
Fig. 12. Running time and energy consumption of Wisture

handling multimodal sensing inputs are crucial to semi-supervised learning for IoT applications. SG-noPseudo
also perform worse than the supervised counterpart. Thus pseudo positive data/label tuples are important to
prevent discriminator from overfitting when the number of labelled data is limited. In addition, SenseGAN
outperforms SG-rnnD in all three tasks, indicating the instability of RNN-based discriminator.

4.4 Energy and Time Efficiencies
Finally, we evaluate the energy and time efficiencies of SenseGAN when running on an IoT device, Intel Edison.
Intel Edison computing platform is powered by the Intel Atom SoC dual-core CPU at 500 MHz and is equipped
with 1GB memory and 4GB flash storage. For fairness, all models are run solely on CPU during experiments.
Please notice that only the classifier of SenseGAN need to be loaded and executed on the IoT device during
inference. The discriminator and generator only help the classifier to leverage unlabelled data during training,
and they can be deleted after the training process.

We evaluate SenseGAN and all baseline models used in Section 4.2 trained on 10% of labelled data by measuring
their per-inference running time and energy consumption. All the measurements are reported by taking the
mean of 500 experiments.

The results on three IoT tasks are illustrated in Figure 10, 11, and 12. SenseGAN and its supervised counterpart,
DeepSense, have almost the same running time and energy consumption on three tasks, while other semi-
supervisedmodels consume a little more time and energy during inference compared their supervised counterparts.
This observation highlights the feature of SenseGAN that can leverage unlabelled sensing data for training
without additional time and energy consumption during inference on IoT devices. In addition, random forest
based algorithms, Semi-RF and RF, take relatively long time to run. It is because random forest models consist
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Fig. 13. Accuracy of HHAR with hyperparameters α , γ , and λ.
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Fig. 14. Accuracy of UserID with hyperparameters α , γ , and λ.
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Fig. 15. Accuracy of Wisture with hyperparameters α , γ , and λ.

of long decision paths that contain a large number of condition operations, which slow down the instruction
pipelining in the CPU.

4.5 Hyper-parameter Tuning

The training process of SenseGAN is controlled by several hyper-parameters. α controls the tradeoff between
two types of negative tuples created by the generator and the classifier. γ controls the tradeoff between loss
functions generated by the supervised classification error and the adversarial game among three components. λ
controls the strength of gradient penalty. In this subsection, we evaluate the final performance of SenseGAN
with different choices of these three hyper-parameters on three IoT tasks.

We still evaluate with an illustrating case that randomly selects p = 10% of training samples as labelled data
and regards all the rest as unlabelled data, i.e., q = 100%. The default value of α is 0.5; λ is 10; and γ is 10, 150,
and 100 for HHAR, UserID, and Wisture respectively. During each set of experiments, we only change the value
of target hyper-parameter, while keeping all other hyper-parameters as the default values. The tradeoffs between
the prediction accuracy of the choices of hyper-parameters are shown in Figure 13, 14, and 15.
For α , it achieves the best performance with 0.5 on all three tasks. Therefore, treating two types of negative

tuples equally helps to improve the predictive performance of SenseGAN. Similarly, λ consistently achieves the
best performance when equals to 10 in all three tasks. These experiments show that fixed fault values work well
for α and λ in practice, so we do not have to tune the value of α and λ for different tasks. However, the values of
γ are different when achieving the highest accuracy in three tasks. When γ is small, the classifier cannot obtain
enough learning signal from the labelled data. When γ is large, the learning signal from the labelled data can
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overwhelms the learning signal from the adversarial game. Therefore, we need to fine tune the value of γ to
balance these two types of learning signals for different tasks.

5 CONCLUSIONS AND FUTURE WORK
In this paper, we present a semi-supervised deep-learning framework, SenseGAN, for IoT applications. SenseGAN
separates the functionalities of discriminator and classifier into two neural networks, designs specific generator
and discriminator structures for handling multimodal sensing inputs, and stabilizes and enhances the adversarial
training process by WGAN with gradient penalty as well as Gumbel-Softmax for categorical representations.
The evaluation empirically shows that SenseGAN can efficiently leverage both labelled and unlabelled data to
effectively improve the predictive power of the classifier without additional time and energy consumption during
the inference.

Several improvement opportunities remain. First, our architecture for fusingmulti-sensor data is not yet optimal.
For example, we can use attention-based structures [41] to guide the discriminator and the generator to focus
on data segments containing more representative information. Second, SenseGAN focuses on the classification
problem in the IoT scenario. However, regression is another common IoT task that needs to be considered. To
solve the regression problem with SenseGAN, we can transform the range of continuous target outputs into a
set of intervals that can be used as discrete classes. By treating regression problems as classification problems,
SenseGAN can be applied in the manner described in this paper. However, we still need further studies to formally
solve this problem. Third, the learning process of SenseGAN is computationally intensive. Therefore, more studies
are needed to enable online adaptive learning with streaming unlabelled sensing data on low-power IoT devices.
Finally, more evaluation is needed in the context of deployed application scenarios to better understand the
feasibility of needed (albeit minimal) labeling and the limitations of the approach.
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